noncompetitive inhibitor
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 13)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 47 (6) ◽  
pp. 1231-1240
Author(s):  
V. I. Timofeev ◽  
N. E. Zhukhlistova ◽  
I. P. Kuranova

Abstract— Using a molecular dynamics method, the state of the dimeric thymidine phosphorylase molecule from Escherichia coli in a complex with noncompetitive enzyme inhibitor 3'-azidothymidine and phosphate ion was studied on a trajectory of 50 ns. Previously obtained atomic coordinates of a complex of thymidine phosphorylase with azidothymidine and sulfate at a resolution of 1.52 Å were used as a starting model. It was demonstrated that both subunits of a dimeric enzyme molecule function asynchronously in a given time interval; moreover, each subunit maintains an open conformation. It was found that the nature of ligand at the nucleoside center affects the binding strength of phosphate in the phosphate center. In a complex with an inhibitor, both ligands over the entire time interval remain bound to the enzyme, while the release of phosphate from the active center is observed when simulating the behavior of thymidine phosphorylase in the presence of phosphate and thymidine substrate. The stabilizing effect of azidothymidine on phosphate binding is consistent with the behavior of azidothymidine as a noncompetitive inhibitor of thymidine phosphorylase.


2021 ◽  
pp. 096032712110479
Author(s):  
Guangju Wang ◽  
Yajuan Bi ◽  
Hui Xiong ◽  
Tongwei Bo ◽  
Lifeng Han ◽  
...  

The balance of cisplatin uptake and efflux, mediated mainly by organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 (MATE1), respectively, determines the renal accumulation and nephrotoxicity of cisplatin. Using transporter-mediated cellular uptake assay, we identified wedelolactone (WEL), a medicinal plant-derived natural compound, is a competitive inhibitor of OCT2 and a noncompetitive inhibitor of MATE1. Wedelolactone showed a selectivity to inhibit OCT2 rather than MATE1. Cytotoxicity studies revealed that wedelolactone alleviated cisplatin-induced cytotoxicity in OCT2-overexpressing HEK293 cells, whereas it did not alter the cytotoxicity of cisplatin in various cancer cell lines. Additionally, wedelolactone altered cisplatin pharmacokinetics, reduced kidney accumulation of cisplatin, and ameliorated cisplatin-induced acute kidney injury in the Institute of Cancer Research mice. In conclusion, these findings suggest a translational potential of WEL as a natural therapy for preventing cisplatin-induced nephrotoxicity and highlight the need for drug–drug interaction investigations of WEL with other treatments which are substrates of OCT2 and/or MATE1.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 190
Author(s):  
Mohammed Hamed Alqarni ◽  
Ahmed Ibrahim Foudah ◽  
Magdy Mohamed Muharram ◽  
Nikolaos E. Labrou

Glutathione transferases (GSTs) are a family of Phase II detoxification enzymes that are involved in the development of the multidrug resistance (MDR) mechanism in cancer cells and therefore affect the clinical outcome of cancer chemotherapy. The discovery of nontoxic natural compounds as inhibitors for GSTs is a promising approach for chemosensitizing and reversing MDR. Fisetin (7,3′,4′-flavon-3-ol) is a plant flavonol present in many plants and fruits. In the present work, the interaction of fisetin with human glutathione transferase A1-1 (hGSTA1-1) was investigated. Kinetic analysis revealed that fisetin is a reversible inhibitor for hGSTA1-1 with IC50 1.2 ± 0.1 μΜ. It functions as a mixed-type inhibitor toward glutathione (GSH) and as a noncompetitive inhibitor toward the electrophile substrate 1-chloro-2,4-dinitrobenzene (CDNB). In silico molecular modeling and docking predicted that fisetin binds at a distinct location, in the solvent channel of the enzyme, and occupies the entrance of the substrate-binding sites. Treatment of proliferating human epithelial colorectal adenocarcinoma cells (CaCo-2) with fisetin causes a reduction in the expression of hGSTA1-1 at the mRNA and protein levels. In addition, fisetin inhibits GST activity in CaCo-2 cell crude extract with an IC50 (2.5 ± 0.1 μΜ), comparable to that measured using purified recombinant hGSTA1-1. These actions of fisetin can provide a synergistic role toward the suppression and chemosensitization of cancer cells. The results of the present study provide insights into the development of safe and effective GST-targeted cancer chemosensitizers.


2020 ◽  
Vol 98 (11) ◽  
pp. 725-735
Author(s):  
Vnira R. Akhmetova ◽  
Nail S. Akhmadiev ◽  
Radik A. Zainullin ◽  
Veronika R. Khayrullina ◽  
Ekaterina S. Mescheryakova ◽  
...  

Twelve new α,ω-bis[(3,5-dimethylpyrazol-4-yl)methylsulfanyl]alkanes linked by alkyl, diethyl sulfide, and triethyl dioxide spacers were prepared by the multicomponent reaction of acetylacetone, formaldehyde, α,ω-dithiols, and monosubstituted hydrazines. Testing of these products for inhibition of α-amylase enzyme in vitro showed that bis(N-methylpyrazolylmethylsulfanyl)ethane 4a inhibits the enzyme by the competitive mechanism. Meanwhile, the water-soluble adduct of bis(isoxazolylmethylsulfanyl)ethane 2 with HCl (2·HCl) is a noncompetitive inhibitor. The molecular docking results attest to high complementarity between the test molecules and the enzymes such as α-amylases from Aspergillus niger and human pancreas. Bis-pyrazole compounds 1, 1·HCl, and 4a and bis-isoxazole compounds 2 and 2·HCl positioned in the active site of both α-amylases form two closely spaced clusters. For all cases, the bioactive conformations of the modeled ligands were identified, demonstrating high affinity of the bis-azoles (1, 1·HCl, 2, 2·HCl, 4a) to the enzymes. Hydrogen bonds stabilizing their position in both α-amylases active sites were identified.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4931
Author(s):  
May Thazin Thant ◽  
Nutputsorn Chatsumpun ◽  
Wanwimon Mekboonsonglarp ◽  
Boonchoo Sritularak ◽  
Kittisak Likhitwitayawuid

Two new compounds, dihydrodengibsinin (1) and dendrogibsol (2), were isolated from the whole plant of Dendrobium gibsonii, together with seven known compounds (3–9). The structures of the new compounds were elucidated by their spectroscopic data. All these isolates were evaluated for their α-glucosidase inhibitory activities. Dendrogibsol (2) and lusianthridin (7) showed strong α-glucosidase inhibitory activity when compared with acarbose. An enzyme kinetic study revealed that dendrogibsol (2) is a noncompetitive inhibitor of α-glucosidase.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3896
Author(s):  
Geum Seok Jeong ◽  
Myung-Gyun Kang ◽  
Joon Yeop Lee ◽  
Sang Ryong Lee ◽  
Daeui Park ◽  
...  

Eight compounds were isolated from the roots of Glycyrrhiza uralensis and tested for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activities. The coumarin glycyrol (GC) effectively inhibited butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) with IC50 values of 7.22 and 14.77 µM, respectively, and also moderately inhibited MAO-B (29.48 µM). Six of the other seven compounds only weakly inhibited AChE and BChE, whereas liquiritin apioside moderately inhibited AChE (IC50 = 36.68 µM). Liquiritigenin (LG) potently inhibited MAO-B (IC50 = 0.098 µM) and MAO-A (IC50 = 0.27 µM), and liquiritin, a glycoside of LG, weakly inhibited MAO-B (>40 µM). GC was a reversible, noncompetitive inhibitor of BChE with a Ki value of 4.47 µM, and LG was a reversible competitive inhibitor of MAO-B with a Ki value of 0.024 µM. Docking simulations showed that the binding affinity of GC for BChE (−7.8 kcal/mol) was greater than its affinity for AChE (−7.1 kcal/mol), and suggested that GC interacted with BChE at Thr284 and Val288 by hydrogen bonds (distances: 2.42 and 1.92 Å, respectively) beyond the ligand binding site of BChE, but that GC did not form hydrogen bond with AChE. The binding affinity of LG for MAO-B (−8.8 kcal/mol) was greater than its affinity for MAO-A (−7.9 kcal/mol). These findings suggest GC and LG should be considered promising compounds for the treatment of Alzheimer’s disease with multi-targeting activities.


Author(s):  
Geum Seok Jeong ◽  
Myung-Gyun Kang ◽  
Joon Yeop Lee ◽  
Sang Ryong Lee ◽  
Daeui Park ◽  
...  

Eight compounds were isolated from the roots of Glycyrrhiza uralensis and tested for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activities. Glycyrol (GC) effectively inhibited butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) with IC50 values of 7.22 and 14.77 µM, respectively, and also moderately inhibited MAO-B (29.48 µM). Six of the other seven compounds only weakly inhibited AChE and BChE, whereas liquiritin apioside moderately inhibited AChE (IC50 = 36.68 µM). Liquiritigenin (LG) potently inhibited MAO-B (IC50 = 0.098 µM) and MAO-A (IC50 = 0.27 µM), and liquiritin, a glycoside of LG, weakly inhibited MAO-B (> 40 µM). GC was a reversible, noncompetitive inhibitor of BChE with a Ki value of 4.47 µM, and LG was a reversible competitive inhibitor of MAO-B with a Ki value of 0.024 µM. Docking simulations showed that the binding affinity of GC for BChE (-7.8 kcal/mol) was greater than its affinity for AChE (-7.1 kcal/mol), and suggested that GC interacted with BChE at Thr284 and Val288 by hydrogen bonds (distances: 2.42 and 1.92 Å, respectively) beyond the ligand binding site of BChE, but that GC did not form hydrogen bond with AChE. The binding affinity of LG for MAO-B (-8.8 kcal/mol) was greater than its affinity for MAO-A (-7.9 kcal/mol). These findings suggest GC and LG should be considered promising compounds for the treatment of Alzheimer’s disease with multi-targeting activities.


Author(s):  
Natalya Bukreyeva ◽  
Emily K. Mantlo ◽  
Rachel A. Sattler ◽  
Cheng Huang ◽  
Slobodan Paessler ◽  
...  

AbstractThe ongoing COVID-19 pandemic continues to pose a major public health burden around the world. The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected over one million people worldwide as of April, 2020, and has led to the deaths of nearly 300,000 people. No approved vaccines or treatments in the USA currently exist for COVID-19, so there is an urgent need to develop effective countermeasures. The IMPDH inhibitor merimepodib (MMPD) is an investigational antiviral drug that acts as a noncompetitive inhibitor of IMPDH. It has been demonstrated to suppress replication of a variety of emerging RNA viruses. We report here that MMPD suppresses SARS-CoV-2 replication in vitro. After overnight pretreatment of Vero cells with 10 μM of MMPD, viral titers were reduced by 4 logs of magnitude, while pretreatment for 4 hours resulted in a 3-log drop. The effect is dose-dependent, and concentrations as low as 3.3 μM significantly reduced viral titers when the cells were pretreated prior to infection. The results of this study provide evidence that MMPD may be a viable treatment option for COVID-19.


2020 ◽  
Vol 99 (5) ◽  
pp. 544-551 ◽  
Author(s):  
L.K. Zaugg ◽  
A. Banu ◽  
A.R. Walther ◽  
D. Chandrasekaran ◽  
R.C. Babb ◽  
...  

The canonical Wnt/β-catenin signaling pathway is crucial for reparative dentinogenesis following tooth damage, and the modulation of this pathway affects the rate and extent of reparative dentine formation in damaged mice molars by triggering the natural process of dentinogenesis. Pharmacological stimulation of Wnt/β-catenin signaling activity by small-molecule GSK-3 inhibitor drugs following pulp exposure in mouse molars results in reparative dentinogenesis. The creation of similar but larger lesions in rat molars shows that the adenosine triphosphate (ATP)–competitive GSK-3 inhibitor, CHIR99021 (CHIR), and the ATP noncompetitive inhibitor, Tideglusib (TG), can equally enhance reparative dentine formation to fully repair an area of dentine damage up to 10 times larger, mimicking the size of small lesions in humans. To assess the chemical composition of this newly formed dentine and to compare its structure with surrounding native dentine and alveolar bone, Raman microspectroscopy analysis is used. We show that the newly formed dentine comprises equal carbonate to phosphate ratios and mineral to matrix ratios to that of native dentine, both being significantly different from bone. For an effective dentine repair, the activity of the drugs needs to be restricted to the region of damage. To investigate the range of drug-induced Wnt-activity within the dental pulp, RNA of short-term induced (24-h) molars is extracted from separated roots and crowns, and quantitative Axin2 expression is assayed. We show that the activation of Wnt/β-catenin signaling is highly restricted to pulp cells in the immediate location of the damage in the coronal pulp tissue with no drug action detected in the root pulp. These results provide further evidence that this simple method of enhancement of natural reparative dentinogenesis has the potential to be translated into a clinical direct capping approach.


2019 ◽  
Vol 123 (34) ◽  
pp. 7327-7342 ◽  
Author(s):  
Jorge Enrique Hernández González ◽  
Lilian Hernández Alvarez ◽  
Pedro Geraldo Pascutti ◽  
Vitor B. P. Leite

Sign in / Sign up

Export Citation Format

Share Document