Stereospecific synthesis of isomeric 4-substituted 9-(2,3-dihydroxybutyl)adenines

1982 ◽  
Vol 47 (1) ◽  
pp. 173-189 ◽  
Author(s):  
Antonín Holý

Reduction of ethyl 2,3-O-isopropylidene-D-tartrate with sodium borohydride afforded (4S, 5S)-2,2-dimethyl-1,3-dioxolane-4,5-dimethanol (Va) which was benzoylated to give monobenzoyl derivative Vd and further transformed into p-toluensulfonyl derivative Ve. Reaction of the compound Ve with sodium salt of adenine followed by methanolysis gave 2,3-O-isopropylidene derivative Vf which on acid hydrolysis afforded 9-(2S, 3S)-(2,3,4-trihydroxybutyl)adenine (Ia). The enantiomer IIa was obtained from 3,4-O-isopropylidene-D-mannitol via (4R, 5R)-2,2-dimethyl-1,3-dioxolane-4,5-dimethanol (VIa) using the same procedure. Reaction of compounds Vf and VIf with p-toluenesulfonyl chloride afforded 4-O-p-toluenesulfonyl derivatives Vg and VIg. These compounds were also obtained from Va and VIa via di-p-toluenesulfonyl derivatives Vc and VIc by reaction with sodium salt of adenine. Treatment of compounds Vg and VIg with sodium iodide gave 4-iodo derivatives Vh and VIh which on reaction with tri-n-butyltin hydride, followed by acid hydrolysis, afforded enantiomeric threo-2,3-dihydroxybutyl derivatives Ib andIIb. Compounds Vg and VIg on treatment with sodium azide, subsequent catalytic hydrogenation of the intermediates Vj and VIj and acid hydrolysis afforded enantiomeric threo-9-(4-amino-2,3-dihydroxybutyl)adenines (Ic,IIc).


1989 ◽  
Vol 54 (1) ◽  
pp. 248-265
Author(s):  
Antonín Holý

Reaction of 1,3-dichloro-2-propanone (VII) with methylmagnesium chloride, followed by alkaline hydrolysis, afforded 2-methylpropane-1,2,3-triol (VIII) which on treatment with 2,2-dimethoxypropane and subsequent tosylation gave 4-(p-toluenesulfonyloxymethyl)-2,2,4-trimethyl-1,3-dioxolane (IXb). Compound IXb was condensed with sodium salt of adenine and the intermediate X was acid-hydrolysed to give 9-(RS)-(2,3-dihydroxy-2-methylpropyl)adenine (XI). Oxidation of XI with sodium periodate led to 9-(2-oxopropyl)adenine (XII). 9-(RS)-(2-Hydroxy-2-hydroxymethyloctyl)adenine (XVI) was obtained analogously from compound VII and hexylmagnesium bromide via triol XIV. Methyl 2-bromomethyl-2-propenoate (XVII) reacted with sodium salt of adenine and the resulting methyl 2-(adenin-9-ylmethyl)-2-propenoate (XVIII) was hydroxylated with sodium perchlorate and osmium tetroxide. The obtained methyl (RS)-2-(adenin-9-ylmethyl)-2,3-dihydroxypropanoate (XIX) was alkali-hydrolysed to give sodium salt of the acid XX. Reduction of ester XIX with sodium borohydride furnished 9-(RS)-(2,3-dihydroxy-2-hydroxymethylpropyl)adenine (XXI). 1-Nonen-3-ol (XXIII), obtained by reaction of propenal with hexylmagnesium bromide, was converted by hydroxylation with osmium tetroxide into nonane-1,2,3-triol (XXIVa) and further into its 1-O-p-toluenesulfonate XXIVb which reacted with 2,2-dimethoxypropane to give 2,2-dimethyl-4-hexyl-5-(p-toluenesulfonyloxymethyl)-1,3-dioxolane (XXV). Compound XXV reacted with adenine and the resulting intermediate XXVI was converted into 9-(RS)-(2,3-dihydroxynonyl)adenine (XXVII) by acid hydrolysis. 9-(3-Methyl-2-buten-1-yl)adenine (XXVIII), obtained by alkylation of sodium salt of adenine with 1-bromo-3-methyl-2-butene, was oxidized with potassium permanganate in an acid medium to give 9-(3-hydroxy-2-oxo-3-methylbutyl)adenine (XXIX). This compound was converted into 9-(RS)-(2,3-dihydroxy-3-methylbutyl)adenine (XXX) by reduction with sodium borohydride. 4-C-Hydroxymethyl-1,2-O-isopropylidene-α-D-xylofuranose (XXXII) reacted with 2,2-dimethoxypropane under formation of 4-C-hydroxymethyl-1,2:3,5-di-O-isopropylidene derivative XXXIIIa whose p-toluenesulfonyl derivative XXXIIIb on treatment with adenine afforded 4-C-(adenin-9-yl)methyl-1,2:3,5-di-O-isopropylidene-α-D-xylofuranose (XXXIV). Acid hydrolysis of this compound, followed by oxidation in an alkaline medium, gave (2S,3R)-4-(adenin-9-yl)-3-hydroxymethyl-2,3-dihydroxybutanoic acid, isolated as its ethyl ester XXXVI.



1974 ◽  
Vol 52 (1) ◽  
pp. 122-124 ◽  
Author(s):  
Hans H. Baer ◽  
Chung-Wai Chiu

L-Desosamine (3,4,6-trideoxy-3-dimethylamino-L-xylo-hexose), the enantiomer of a widely distributed antibiotics component, was synthesized by borohydride reduction of methyl 3,4,6-trideoxy-3-nitro-α-L-erythro-hex-3-enopyranoside followed by catalytic hydrogenation of the nitro group, N,N-dimethylation of the resulting saturated amino glycoside, and acid hydrolysis of the glycosidic bond.



1989 ◽  
Vol 54 (2) ◽  
pp. 446-454 ◽  
Author(s):  
Antonín Holý

1-Azidopropane-2,3-diol (IIb) reacts with p-toluenesulfonyl chloride to give the tosyl derivative IIIa which, on acid catalyzed condensation with 2,3-dihydropyran, afforded 1-azido-2-(tetrahydropyran-2-yloxy-3-(p-toluenesulfonyloxy)propane (IIIb). Treatment of adenine sodium salt with IIIb resulted in the intermediate IV which was transformed by acid hydrolysis to 9-(RS)-(3-azido-2-hydroxypropyl)adenine (V). Catalytic hydrogenation of V led to 9-(RS)-(3-amino-2-hydroxypropyl)adenine (VI). 9-(RS)-(3-Azido-2-hydroxypropyl)-N6-benzoyladenine (VII) was obtained from V by chlorotrimethylsilane/benzoyl chloride treatment. Reaction of the compound VII with dimethyl p-toluenesulfonyloxymethanephosphonate (VIII) in the presence of excess sodium hydride, followed by alkaline hydrolysis, afforded methyl 9-(3-azido-2-phosphonylmethoxypropyl)adenine (IXa) which was transformed to the parent acid IXb by bromotrimethylsilane treatment. Hydrogenolysis of IXb yielded 9-(RS)-(3-amino-2-phosphonylmethoxypropyl)adenine (X).



1982 ◽  
Vol 47 (5) ◽  
pp. 1392-1407 ◽  
Author(s):  
Antonín Holý ◽  
Ivan Votruba ◽  
Erik De Clercq

D-Eritadenine (Ia) and L-eritadenine (IIa) were prepared from 5-(adenin-9-yl)-5-deoxyaldofuranoses or enantiomeric 2,3-disubstituted erythronolactones (VIIIb, c, XIV). Oxidation of methyl 2,3-O-isopropylidene-D-ribofuranoside (IX) with periodate in the presence of ruthenium, followed by acid hydrolysis and reduction with sodium borohydride, afforded L-ribonolactone (XI). Its 2,3-O-isopropylidene derivative was subjected to alkaline hydrolysis, followed by oxidation with periodate, reduction with sodium borohydride and reaction with cyclohexanone to give 2,3-O-cyclohexylidene-L-erythronolactone (XIV). Condensation of [U-14C]-adenine with VIIIb, followed by acid hydrolysis, afforded [U-14C-adenine]-D-eritadenine. The threo-eritadenines III and IV were prepared by oxidation of 1-(adenin-9-yl)-1-deoxy-2,3-O-isopropylidenethreitols XVI and XVII with sodium periodate in the presence of ruthenium, followed by acid hydrolysis. Reaction of 9-(2,2-diethoxyethyl)adenine (XIX) with malonic acid gave 4-(adenin-9-yl)-3-butenoic acid (XXI); its methyl ester XXII, prepared by treatment with methanol, was isomerized with triethylamine to give methyl 4-(adenin-9-yl)-2-butenoate (XXIII). Hydroxylation of XXIII with osmium tetroxide afforded the racemic mixture of D- and L-threo-eritadenine (III+ IV). Eritadenines Ia and IIa were active against vaccinia, measles and vesicular stomatitis virus. Eritadenine Ia was also effective against reo- and parainfluenza virus. In general, the antiviral activity of the eritadenines decreased in the order D-erythro (Ia) > L-erythro (IIa) > D- and L-threo (III, IV).



1982 ◽  
Vol 47 (10) ◽  
pp. 2786-2805 ◽  
Author(s):  
Antonín Holý

1-(Adenin-9-yl)-1-deoxy-DL-ribitol (III), -D-arabitol (IXa), -L-arabitol (XIVa), -DL-xylitol (XXIVa), 1-(cytosin-L-yl)-1-deoxy-D-arabitol (IXb), -L-arabitol (XIVb), 1-(uracil-1-yl)-1-deoxy-D-arabitol (IXc), -L-arabitol (XIVc) and -DL-xylitol (XXIVb) were prepared by reaction of 1-O-p-toluenesulfonyl-2,3:4,5-di-O-isopropylidenealditols Ib, VIIb, XIIb and XXIIb with sodium salts of adenine, N4-benzoylcytosine or 4-methoxy-2-pyrimidone followed by removal of the protecting groups. Condensation of the mentioned sodium salts with methyl 5-O-p-toluenesulfonyl-2,3-O-isopropylidene-β-D-ribofuranoside (IV) with subsequent acid hydrolysis and reduction with sodium borohydride afforded 1-(adenin-9-yl)-1-deoxy-L-ribitol (VIa) and 1-(cytosin-1-yl)-1-deoxy-L-ribitol (VIb). 1-(Adenin-9-yl)-1-deoxy-L-lyxitol (XVII), -L-lyxitol (XVIII) and -2-O-methyl-D-lyxitol (XXI) were prepared analogously. Acid hydrolysis of 5-(adenin-9-yl)-5-deoxy-4-O-benzyl-1,2-O-isopropylidene-α-D-xylofuranose (XXVa), followed by reduction with sodium borohydride and catalytic hydrogenation, gave 1-(adenin-9-yl)-1-deoxy-L-xylitol (XXVIb).



1980 ◽  
Vol 58 (16) ◽  
pp. 1751-1758 ◽  
Author(s):  
Hans H. Baer ◽  
Hanna R. Hanna

Treatment of methyl 3,6-dideoxy-2,4-di-O-methylsulfonyl-3-nitro-α-L-glucopyranoside (2) with sodium acetate and acetic acid in acetone gave methyl 4-O-acetyl-2,3,6-trideoxy-3-nitro-α-L-erythro-hex-2-enopyranoside (3) as a kinetic product, and the 2-O-acetyl-3,4,6-trideoxy-3-nitro-α-L-threo-hex-3-eno isomer 4 as the thermodynamically preferred product. Treatment of 2 or 4 with sodium borohydride produced a separable mixture of methyl 2,3,4,6-tetradeoxy-3-nitro-α-L-threo-hexopyranoside (5) and its α-L-erythro epimer (6), the latter being convertible into the former by base-catalyzed epimerization. Acid hydrolysis of 5 and 6 afforded the corresponding free nitro sugars 7 and 8. Catalytic hydrogenation of 5 led to the corresponding amino glycoside, isolated as the acetate 9 or hydrochloride 10; similarly, 6 gave the epimeric amine which was isolated as its acetate 14 or picrate 15. N-Trifluoroacetylation of 9 provided the N-trifluoroacetyl glycoside 12 which was hydrolyzed to give a 49% yield (overall from 2) of 2,3,4,6-tetradeoxy-3-trifluoroacetamido-L-threo-hexose (4-deoxy-N-trifluoroacetyldaunosamine, 13). Analogously, 14 afforded the epimeric N-trifluoroacetyl glycoside 17 which was hydrolyzed to give a 28% overall yield of 2,3,4,6-tetradeoxy-3-trifluoroacetamido-L-erythro-hexose (4-deoxy-N-trifluoroacetylristosamine, 18).



1981 ◽  
Vol 46 (9) ◽  
pp. 2123-2128 ◽  
Author(s):  
Jiří Křepelka ◽  
Jiří Holubek

Lactones VI-IX were prepared on reduction of anhydrides of 4-aryl-1-methoxynaphthalene-2,3-dicarboxylic acids IV and V with sodium borohydride in methanol. Catalytic hydrogenation on platinum of lactones VIII and IX gave lactones with hydrogenated ring A, or A and C. Lactones XII and XIII were found to possess an inhibitory effect on the growth of the tumour S 37 in experimental animals.



1975 ◽  
Vol 28 (3) ◽  
pp. 673 ◽  
Author(s):  
DJ Collins ◽  
C Lewis ◽  
JM Swan

Treatment of cyclododecane-r-1,c-5,c-9-triyl tris(p-toluenesulphonate) with sodium azide in dimethyl-formamide at 100� for 6 h gave the corresponding cis,cis-triazide which upon hydrogenation or reduction with lithium aluminium hydride gave cyclododecane-r-1,c-5,c-9-triamine, isolated as the tris-salicylidene derivative. Acid hydrolysis of this, removal of the salicylaldehyde, and treatment of the aqueous solution with sodium carbonate and 2,3-dimethoxybenzoyl chloride gave r-1,c-5,c- 9-tris(2,3-dimethoxybenzamido)cyclododecane. ��� Treatment of (E,E,E)-cyclododeca-1,5,9-triene with an excess of acetonitrile and sulphuric acid at room temperature for three days gave 18% of (E,E)-1-acetamidocyclododeca-4,8-diene; no di- or tri-amides were isolated.



1990 ◽  
Vol 55 (10) ◽  
pp. 2521-2536 ◽  
Author(s):  
Marcela Krečmerová ◽  
Hubert Hřebabecký ◽  
Antonín Holý

Reaction of sodium salt of 3-N,3'-O-bis(benzyloxymethyl)-2'-deoxyuridine (X) and 3-N,3'-O-bis(benzyloxymethyl)-2'-deoxythymidine (XI) with diethyl p-toluenesulfonyloxymethanephosphonate in dimethylformamide afforded diesters of the respective 5'-O-phosphonomethyl derivatives XII and XVII. Diethyl esters of 5'-O-phosphonomethyl-2'-deoxynucleosides XV and XIX, obtained after hydrogenolytic removal of the benzyloxymethyl groups, were converted into free 2'-deoxy-5'-O-phosphonomethyluridine (XVI) and a mixture of anomeric 1-(2-deoxy-5-O-phosphonomethyl-β-D-erythro-pentofuranosyl)thymines (XXIIIa, XXIIIb), respectively. Analogously, 2'-deoxy-5'-O-phosphonomethylcytidine (XXXIV) was prepared from 4-N-benzoyl-2'-deoxy-3'-O-(tetrahydro-2H-pyran-2-yl) cytidine (XXX) via diethyl ester of 2'-deoxy-5'-O-phosphonomethylcytidine (XXXIII). This compound reacted with bromotrimethylsilane to give compound XXXIV without anomerization and nucleoside bond cleavage. Condensation of the protected nucleosides X and XI with dibenzyl p-toluenesulfonyloxymethanephosphonate afforded dibenzyl esters of the corresponding 5'-O-phosphonomethyl derivatives XIII and XVIII. The free 5'-O-phosphonomethyl derivatives XVI and XXIIIa were obtained from XIII and XVIII by catalytic hydrogenation.



1973 ◽  
Vol 28 (11-12) ◽  
pp. 650-652
Author(s):  
Harold Rüdiger ◽  
Reinhard Siede

Abstract 5-Methyltetrahydrofolic acid is prepared from folic acid by sodium borohydride reduction, reac­ tion with formaldehyde and reduction to the methyl derivative by sodium borohydride. The crude product is precipitated as barium salt which after having been converted to the sodium salt by ion exchange is adsorbed to QAE-Sephadex and eluted by different acetic acid gradients in subsequent chromatographies. This method allows to process gram quantities on reasonably small columns



Sign in / Sign up

Export Citation Format

Share Document