Mechanism of base-catalyzed cyclization of ethyl N-(substituted aminocarbonyl)glycinates

1987 ◽  
Vol 52 (1) ◽  
pp. 156-161
Author(s):  
Jaromír Mindl ◽  
Vojeslav Štěrba

The cyclization rate constants have been measured of substituted ethyl N-(phenylaminocarbonyl)-, N-(alkylaminocarbonyl)-, and N-(phenylaminothiocarbonyl)glycinates RNHCXNHCH2CO2.C2H5 (X = O, S). Logarithms of these constants increase with decreasing basicity of the amines down to the value of pKa(RNH2) = 5.5. The rate-limiting step of the reaction is formation of the tetrahedral intermediate. With ethyl N-(phenylaminocarbonyl)glycinates (whose pKa(RNH2) values are higher) this dependence, on the contrary, slightly decreases, and the acid-catalyzed splitting off of ethoxy group from the cyclic intermediate becomes rate-limiting. The cyclization rate of a series of ethyl N-(phenylaminothiocarbonyl)glycinates is practically independent of the pKa(RNH2) values, the change in the rate-limiting step would take place at pH about 9.

1981 ◽  
Vol 46 (1) ◽  
pp. 256-261 ◽  
Author(s):  
Vladimír Macháček ◽  
Said El Bahaie ◽  
Vojeslav Štěrba

Kinetics has been studied of cyclization of 2-acetyl-3-methylamino-N-benzoyl-2-betenethioamide (Ia) and 2-acetyl-3-amino-N-benzoyl-2-butenethioamide (Ib) giving 5-acetyl-2-phenyl-1,6-dimethyl-4-(1H)pyrimidinethione (IIa) and 5-acetyl-2-phenyl-6-methyl-4-(3H)-pyrimidinethione (IIb), respectively, in aqueous buffers within pH 2 to 9. Formation of the cyclic intermediate is rate-limiting in the cyclization of Ib within the whole range. In the case of Ia the rate-limiting step consists in acid-catalyzed splitting off of water from the cyclic intermediate above pH 5 and in base-catalyzed splitting off of hydroxyl ion above pH 7.


1979 ◽  
Vol 44 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Vladimír Macháček ◽  
Said A. El-bahai ◽  
Vojeslav Štěrba

Kinetics of formation of 2-imino-4-thiazolidone from S-ethoxycarbonylmethylisothiouronium chloride has been studied in aqueous buffers and dilute hydrochloric acid. The reaction is subject to general base catalysis, the β value being 0.65. Its rate limiting step consists in acid-catalyzed splitting off of ethoxide ion from dipolar tetrahedral intermediate. At pH < 2 formation of this intermediate becomes rate-limiting; rate constant of its formation is 2 . 104 s-1.


2020 ◽  
Author(s):  
Vincent Wang

<p>The development of an electrocatalyst with a rapid turnover frequency, low overpotential and long-term stability is highly desired for fuel-forming reactions, such as water splitting and CO<sub>2</sub> reduction. The findings of the scaling relationships between the catalytic rate and thermodynamic parameters over a wide range of electrocatalysts in homogeneous and heterogeneous systems provide useful guidelines and predictions for designing better catalysts for those redox reactions. However, such relationships also suggest that a catalyst with a high catalytic rate is typically associated with a high overpotential for a given reaction. Inspired by enzymes, the introduction of additional interactions through the secondary coordination sphere beyond the active site, such as hydrogen-bonding or electrostatic interactions, have been shown to offer a promising avenue to disrupt these unfavorable relationships. Herein, we further investigate the influence of these cooperative interactions on the faster chemical steps, in addition to the rate-limiting step widely examined before, for molecular electrocatalysts with the structural and electronic modifications designed to facilitate the dioxygen reduction reaction, CO<sub>2</sub> reduction reaction and hydrogen evolving reaction. Based on the electrocatalytic kinetic analysis, the rate constants for faster chemical steps and their correlation with the corresponding thermodynamic parameters are evaluated. The results suggest that the effects of the secondary coordination sphere and beyond on these fuel-forming reactions are not necessarily beneficial for promoting all chemical steps and no apparent relation between rate constants and thermodynamic parameters are found in some cases studied here, which may implicate the design of electrocatalysts in the future. Finally, these analyses demonstrate that the characteristic features for voltammograms and foot-of-the-wave-analysis plots are associated with the specific kinetic phenomenon among these multi-electron electrocatalytic reactions, which provides a useful framework to probe the insights of chemical and electronic modifications on the catalytic steps quantitatively (i.e. kinetic rate constants) and to optimize some of critical steps beyond the rate-limiting step.</p>


1988 ◽  
Vol 53 (12) ◽  
pp. 3154-3163 ◽  
Author(s):  
Jiří Klicnar ◽  
Jaromír Mindl ◽  
Ivana Obořilová ◽  
Jaroslav Petříček ◽  
Vojeslav Štěrba

The reaction of 1,2-diaminobenzene with 2,3-butanedione is subject to general acid catalysis in acetate and phosphate buffers (pH 4-7). The rate-limiting step of formation of 2,3-dimethylquinoxaline consists in the protonation of dipolar tetrahedral intermediate. In the case of the reaction of 1,2-diaminobenzene with ethyl 2-oxopropanoate, the dehydration of carbinolamine gradually becomes rate-limiting with increasing pH in acetate buffers, whereas in phosphate buffers a new reaction pathway makes itself felt, viz. the formation of amide catalyzed by the basic buffer component and by hydroxide ion.


1993 ◽  
Vol 294 (1) ◽  
pp. 87-94 ◽  
Author(s):  
G C Brown ◽  
C E Cooper

Control analysis is used to analyse and quantify the concept of a rate-limiting step within an enzyme. The extent to which each rate constant within the enzyme limits the steady-state rate of the enzyme and the levels of enzyme intermediate species are quantified as flux and concentration control coefficients. These coefficients are additive and obey summation theorems. The control coefficients of triose phosphate isomerase, carbamate kinase and lactate dehydrogenase are calculated from literature values of the rate constants. It is shown that, contrary to previous assumption, these enzymes do not have a unique rate-limiting step, but rather flux control is shared by several rate constants and varies with substrate, product and effector concentrations, and with the direction of the reaction. Thus the general assumption that an enzyme will have a unique rate-limiting step is unjustified.


1979 ◽  
Vol 44 (5) ◽  
pp. 1453-1459 ◽  
Author(s):  
Jaromír Kaválek ◽  
Ahmad Ashfaq ◽  
Vojeslav Štěrba

Rate constants have been determined of nucleophilic aromatic substitution of 2,4,6-trinitrophenyl methyl ether (Ia), 2,4,6-trinitrophenyl ethanoate (Ic), 2,4,6-trinitrochlorobenzene (Ib), 2,4,6-trinitrodiphenyl ether (Id), 2,4,6-trinitro-4'-bromodiphenyl ether (Ie), 2,3',4,6-tetranitrodiphenyl ether (If) and 2,4,4',6-tetranitrodiphenyl ether (Ig) with methoxide, ethanoate and methyl cyanoethanoate (II) anions in methanol. For the compounds Ia,b rate and equilibrium constants of addition of the anion II(-) at positions 3 and 5 have been measured, too. In reactions of the compounds Ia to Ig with ethanoate anion the first (rate-limiting) step produces the phenyl ester Ic which reacts with a further ethanoate anion to give 2,4,6-trinitrophenol (Ih) and ethanoic anhydride. In reactions of the bromo derivative Ie and, to a still larger extent, compound Id the methyl derivative Ia is formed besides the compound Ih.


1987 ◽  
Vol 52 (10) ◽  
pp. 2492-2499 ◽  
Author(s):  
Oldřich Pytela ◽  
Petr Svoboda ◽  
Miroslav Večeřa

The effect of acids on the decomposition of 3-methyl-1,3-diphenyltriazene has been studied in aqueous ethanol (40% (v/v) ethanol). The dependences found between the rate constant and acid concentration have been analyzed by means of non-linear regression using models including the specific and general catalysis and formation of associates between the substrate and the buffer components. The substrate has been found to form electrostatic associates with the conjugated base of acid. The complex formed is decomposed with the assistance of the proton or a general acid in the rate-limiting step to form the product. The Bronsted coefficient α = 0.81 has been found. Investigation of the activation parameters supports the earlier conclusions, indicating a dependence between the reaction mechanism and composition of the aqueous organic solvent.


1981 ◽  
Vol 46 (9) ◽  
pp. 2104-2109
Author(s):  
Jaromír Toman ◽  
Vojeslav Štěrba ◽  
Jiří Klicnar

Tautomerism of the title compound in methanol in the presence of buffers is subject to general acid and base catalysis. The rate-limiting step of the acid-catalyzed reaction consists in addition of the proton to the methine carbon atom of the enamine form, whereas that of the base catalyzed reaction consists in protonation of the formed conjugated base of the enamine. Solvent effects on the equilibrium constant of the isomerization have been measured.


1987 ◽  
Vol 52 (1) ◽  
pp. 120-131 ◽  
Author(s):  
Jaromír Kaválek ◽  
Josef Jirman ◽  
Vojeslav Štěrba

Rate constants of base-catalyzed methanolysis and dissociation constants in methanol have been determined for benzoylthiourea (II), 1,3-diacetylthiourea (III), 1,3-dibenzoylthiourea (IV), and 1-acetyl-3-benzoylthiourea (V). With the diacyl derivatives III and IV, the reaction of methoxide ion with the neutral substrate is accompanied by that of methoxide with the substrate anion (at higher alkoxide concentrations). Above 0.1 mol l-1 CH3O(-), the rate constants are also affected by medium. The rate of the reaction of neutral diacyl derivative is decreased, and that of the reaction of methoxide with the substrate anion is rapidly increased. The dissociation constant of II is higher than that of acetylthiourea (I) by about one order of magnitude, but the attack of methoxide on the carbonyl group of II is about three times slower than that in I. The benzoyl group at the N1 nitrogen exhibits a greater activating influence (in both the rate and the equilibrium constants) on the other NHCOR group than the acetyl group does. With V the ratio of methanolysis rate constants is 9 : 1 in favour of the acetyl group. The reaction of diacetyl derivative III with 1-butanamine has been followed in butanamine buffers. At the lowest butanamine concentrations, the reaction is second order in the amine, and the rate-limiting step is the proton transfer from the intermediate to the second amine molecule. At the highest butanamine concentrations the reaction becomes first order in the amine, and the rate-limiting step changes to the attack of butanamine on the carbonyl group of diacetyl derivative III.


1984 ◽  
Vol 49 (9) ◽  
pp. 2103-2110 ◽  
Author(s):  
Jaromír Kaválek ◽  
Said El Bahaie ◽  
Vojeslav Štěrba

The methanolysis rate constants and dissociation constants have been measured of benzoyl derivatives of substituted phenylureas and phenylthioureas. The dissociation constants of the thio derivatives are higher by 1 order of magnitude and the rate constants are higher by 2 orders of magnitude than the respective values of the oxygen analogues. Logarithms of the rate and dissociation constants have been correlated with the Hammet σ constant; the ρ constant of the methanolysis of the oxygen derivatives is almost 2x higher than that of the thio derivatives, which is explained by a change in the rate-limiting step. Methylation of the phenyl nitrogen atom increases the acidity by almost 2 orders of magnitude. This effect is due obviously to steric hindrance to the conjugation with the adjacent carbonyl or thiocarbonyl group.


Sign in / Sign up

Export Citation Format

Share Document