Vibrational Spectra and Normal Coordinate Analysis of Disulfuryl Difluoride S2O5F2 and Diselenonyl Difluoride Se2O5F2

1993 ◽  
Vol 58 (3) ◽  
pp. 517-529 ◽  
Author(s):  
Jiří Toužín ◽  
Miloš Černík

Raman spectra (1 600 - 100 cm-1) of liquid S2O5F2 and Se2O5F2 and infrared spectra of liquid and gaseous S2O5F2 were measured. A modified general valence force field was used for their interpretation by normal coordinate analysis. Refinement of the number of lines in the Raman spectrum of S2O5F2 by means of numerical separation of the overlapping bands led to the conclusion that liquid S2O5F2 consists at least of three rotamers at room temperature.

1971 ◽  
Vol 49 (18) ◽  
pp. 2931-2936 ◽  
Author(s):  
J. W. Anderson ◽  
G. K. Barker ◽  
J. E. Drake And ◽  
R. T. Hemmings

The infrared and Raman spectra of the series of iodo(methyl)germanes, CH3GeI3, (CH3)2GeI2, and (CH3)3GeI have been recorded. A normal coordinate analysis based on a modified valence force field confirms the a priori assignments for all of the fundamental frequencies except the torsional modes.


1977 ◽  
Vol 30 (9) ◽  
pp. 1905 ◽  
Author(s):  
CG Barraclough ◽  
GE Berkovic ◽  
GB Deacon

The Raman spectra of phenylmercuric chloride, phenylmercuric bromide, phenylmercuric iodide and diphenylmercury, and the infrared and Raman spectra of diphenylmercury in solution are reported. Using the previously reported infrared spectra of these compounds, vibrations were assigned, normal coordinate analyses were performed and frequencies were calculated using a valence force field. Good agreement was achieved between observed and calculated frequencies. The structure of diphenyl-mercury in solution is discussed.


1975 ◽  
Vol 30 (7-8) ◽  
pp. 539-543 ◽  
Author(s):  
Reinhard Demuth ◽  
Joseph Grobe ◽  
Robert Rau

The gas phase IR and liquid phase IR and Raman spectra of (CF3)2PMn(CO)5 and (CF3)2AsMn(CO)6 have been recorded. The spectra are assigned on the basis of a normal coordinate analysis using a transferred force field.


1981 ◽  
Vol 59 (19) ◽  
pp. 2909-2920 ◽  
Author(s):  
John E. Drake ◽  
Boris M. Glavinčevski ◽  
Layla N. Khasrou

Methylthiosilanes of the type (CH3)nH3−nSiSCH3, n = 0–3, and (CH3)HSi(SCH3)2 have been prepared. Their ir and Raman spectra were recorded and assigned. The assignments were supported by normal coordinate analyses based on a modified valence force field.


1989 ◽  
Vol 44 (10) ◽  
pp. 1214-1220 ◽  
Author(s):  
P. Erlhöfer ◽  
W. Preetz

Normal coordinate analyses for all compounds of the two series Cs2[PtF„35Cl6-n] and Cs2[PtF„37Cl6-n], n = 0-6, including the geometric isomers for n = 2, 3, 4 have been performed, based on a general valence force field. The excellent agreement of calculated and observed frequencies confirms the assignments of the vibrational spectra. Due to the stronger trans influence of Cl compared to F in all asymmetric F–Pt–Cl axes the Pt–Cl bonds are strengthened and the Pt–F bonds are weakened, as indicated by valence force constants for Pt–Cl approximately 20% higher, for Pt–F 20% lower, compared with the values calculated for symmetric Cl–Pt–Cl and F–Pt–F axes, respectively. The contour of the Raman line ν2 (Eg, Oh) of Cs2[PtCl6] is explained by the superposition of the calculated spectra for the six most frequent isotopomers Cs2[Pt35Cln37Cl6-n] present in mixtures with natural abundance of Cl isotopes (75,53% 35Cl, 24,47% 37Cl) by statistical distribution on the octahedron sites.


1982 ◽  
Vol 47 (6) ◽  
pp. 1549-1555 ◽  
Author(s):  
Peter Schwendt ◽  
Miloslav Pisárčik

Infrared and Raman spectra of solid NH4[VO(O2)2NH3], ND4[VO(O2)2ND3], 14/15NH4[VO(O2)214/15NH3] (about 50% 15N) and Raman spectrum of solution of NH4[VO(O2)2NH3] have been measured. Interpretation of the spectra was complemented by normal coordinate analysis in the approximation of point mass model (NH3). The results have shown that there exists coupling of vibrations of two V(O2) groups, which enables an explanation of differences between spectra of the mono- and diperoxo complexes. The vibrational coupling of VO and OO bonds within one V(O2) group probably causes small sensitivity of wave number of v(O-O) band to changes of d(O-O) bond length.


1992 ◽  
Vol 47 (12) ◽  
pp. 1667-1672 ◽  
Author(s):  
W. Preetz ◽  
M. Manthey

The IR and Raman spectra of the ten bromo-iodo-osmates(IV) [OsBrnI6-n]2-, n = 0-6, including the geometrical isomers for n = 2, 3, 4, have been recorded at low temperature. The vibrational spectra are completely assigned according to point groups Oh, D4h, C4v, C3v, and C2v, as supported by normal coordinate analyses based on a general valence force field. Due to the different trans-influences Br<I in asymmetric axes Br′–Os–I′, the Os–I′ bonds are strengthened and the Os–Br′ bonds are weakened, as indicated by valence force constants, for Os–I′ on average 4% higher and for Os–Br′ 4% lower, as compared with the values calculated for symmetric I–Os–I and Br–Os–Br axes, respectively.


1994 ◽  
Vol 49 (6) ◽  
pp. 753-758 ◽  
Author(s):  
P. Prillwitz ◽  
W. Preetz

The IR and Raman spectra of the ten bromo-iodo-rhenates(IV) [ReBrnI6-n]2-, n = 0 -6 , including the geometrical isomers for n - 2,3,4, have been recorded at 80 K. The vibrational spectra are completely assigned according to point groups Oh, D4h, C4v, C3v, and C2v, as supported by normal coordinate analyses based on a general valence force field. Due to the different mms-influences Br < I in asymmetric axes Br•-Re-I', the Re-I' bonds are strengthened and the Re-Br• bonds are weakened, as indicated by valence force constants, for Re-I' on average 8,5% higher and for Os-Br• 8,3% lower, as compared with the values calculated for symmetric I-Re-I and Br-Re-Br axes, respectively


1979 ◽  
Vol 34 (11) ◽  
pp. 1320-1329 ◽  
Author(s):  
D. Christen ◽  
V. Hoffmann ◽  
P. Klaeboe

The infrared spectra of 3,3,3-trifluoropropene and hexafluoropropene were studied in the vapour phase and in solution between 4000 and 40 cm-1 . Raman spectra of the compounds as vapours and liquids were recorded and polarization data obtained.The spectra of both molecules are interpreted in terms of Cs symmetry. Complete vibrational assignments, including the torsional mode, are presented, based upon infrared and Raman vapour contours, Raman polarization measurements and the results of a normal coordinate analysis


1990 ◽  
Vol 55 (6) ◽  
pp. 1485-1490 ◽  
Author(s):  
Peter Schwendt ◽  
Milan Sýkora

The infrared and Raman spectra of M2[V2O2(O2)4(H2O)]·xH2O and M2[V2O2(O2)4(D2O)]·xD2O (M = N(CH3)4, Cs) were measured. In the region of the vanadium-oxygen stretching vibrations, the spectra were interpreted based on normal coordinate analysis, employing empirical correlations between the bond lengths and force constants.


Sign in / Sign up

Export Citation Format

Share Document