Equilibrium Studies of Binary and Ternary Complexes of Palladium(II) Involving Amino Acids

1993 ◽  
Vol 58 (5) ◽  
pp. 1103-1108 ◽  
Author(s):  
Mohamed M. Shoukry ◽  
Eman M. Shoukry

The formation constants of the binary and ternary complexes of palladium(II) with diethylenetriamine and amino acids as ligands have been determined potentiometrically at 25 °C in 0.1 M NaNO3 solution. The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of ∆logK values. The mode of chelation was ascertained by conductivity measurements.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Naciye Türkel

Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms ofΔlog10⁡K,log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Amal M. Al-Mohaimeed ◽  
Asma A. Alothman

Potentiometric titration method has been used to define stoichiometries and stability constants of ternary complexes of Cu(II) with duloxetine (D) and some selected amino acids (L). The protonation constants of the ligands and the stability constants of the binary and ternary complexes of Cu(II) with the ligands were calculated from the potentiometric data using the HYPERQUAD program. The formation constants of the complexes formed in aqueous solutions and their concentration distributions as a function of pH were evaluated at 25°C and ionic strength 0.10 mol·L−1 NaNO3. Respective stabilities of ternary complexes have been determined compared with the corresponding binary complexes in terms of Δlog  K and %R.S. values. A novel binary and ternary duloxetine (D) drug with glycine and its Cu(II) complexes has been synthesized and characterized by several spectroscopic methods. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for both complexes. The elemental analyses and mass spectral data have justified the [Cu(D)(Gly)] and [Cu(D)Cl(H2O)] composition of complexes, where D = duloxetine and Gly = glycine. The EPR spectra of Cu(II) complexes support the mononuclear structures. Thermal properties and decomposition kinetics of Cu(II) complexes are investigated.


2009 ◽  
Vol 6 (s1) ◽  
pp. S117-S122 ◽  
Author(s):  
Shaesta Quyoom ◽  
Badr-Ud-Din Khan

The formation constants of the binary 1:1 and 1:2 complexes of Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) withN-acetylcysteine (NAC) and 1:1:1 ternary complexes of the said metal ions with NAC as a primary ligand and some biologically important amino acids as secondary ligands have been determined potentiometrically in aqueous medium. Acid dissociation constants of the ligands used and the formation constants of the binary and the ternary complexes were determined at 25 °C and in ionic strength I=0.1 mol dm-3(KNO3).The formation constants of the 1:1 complexes were found to be higher than 1:2 complexes and the metal ions follow the order Hg(II) >Cu(II) >Cd(II) >Zn(II). In addition UV-spectral studies of the NAC-Metal (II) complexes have also been conducted at appropriate pH values to give further information about the structural nature of NAC- Metal (II) complexes in aqueous medium.


2005 ◽  
Vol 70 (8-9) ◽  
pp. 1057-1066 ◽  
Author(s):  
Ayse Erçag ◽  
Tuba Sismanoglu ◽  
Suheyla Pura

The stability constants of the 1:1 binary complexes of Ni(II) and Co(II) with 3-amino-1,2,4-triazole (AT), leucine (Leu) and glutamic acid (Glu), and the 1:1:1 ternary complex of them and the protonation constants of the ligands were determined potentiometrically at a constant ionic strength of I = 0.10 mol L-1 (NaClO4) in aqueous solutions at 15.0 and 25.0 ?C. The thermodynamic parameters ?Gf0, ?Hf0 and ?Sf0 are reported for the formation reactions of the complexes. The enthalpy changes of all the complexations were found to be negative but the entropy changes positive. While the driving force for the formation of the Ni(II), Co(II) ? AT complexes is the enthalpy decrease, the driving force for the ternary complexes of AT is the entropy increase.


Author(s):  
M. A. Oladipo ◽  
K. T. Ishola ◽  
T. A. Ajayeoba

The formation constants of binary and ternary complexes of Thiobarbituric acid as primary ligand and L-tyrosine and L-histidine as secondary ligands have been examined in 40% (v/v) ethanol-water mixture at 27oC and 35oC and at ionic strength of 0.02 NaNO3 by potentiometric method. The ligands formed 1:1 binary complexes with the metal ions. The primary and secondary ligands simultaneously coordinated to the metal ions to form 1:1:1 ternary complexes. The difference in stability constants of binary and ternary complexes were determined by DlogK and RS%. Ternary complexes exhibited enhanced stability than the binary complexes. The stability of the complexes decrease with increase in temperature. The thermodynamic parameters such as Gibb’s free energy change (ΔG), entropy change (ΔS) and enthalpy change (ΔH) accompany the interactions were evaluated. The interactions were found to be spontaneous, exothermic, and entropically favoured.


Author(s):  
SAKSHI KAUSHIK ◽  
RAVINDER VERMA ◽  
DEEPIKA PUROHIT ◽  
PARIJAT PANDEY ◽  
MANISH KUMAR ◽  
...  

Objective: The current research objective is systematic development and characterization of binary and ternary inclusion complexes of cefuroxime axetil with β-cyclodextrin to improve its pharmaceutical characteristics by using the kneading method. Methods: Phase solubility study was carried out using Higuchi and Connors method. Based on its result, binary complexes of cefuroxime axetil with different ratio of β-cyclodextrin were developed and characterized using differential scanning calorimeter (DSC), fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffractometry (XRD). Then, binary complexes were analyzed for in vitro dissolution testing. The ternary complexes were developed using different ratio of PVP K-30 as a ternary component and evaluated for in vitro dissolution testing and in vitro taste masking. Results: Binary complex of cefuroxime axetil with β-cyclodextrin (1:1) showed better drug release than pure drug. During the development of the ternary complex, β-cyclodextrin (1:1) and 1% w/v PVP K-30 as a ternary agent resulted in an optimized ternary complex. The DSC, FT-IR and XRD studies clearly revealed the formation of binary and ternary complexes. The ternary complex showed better drug release of>85% within 30 min. in comparison to binary complex. The in vitro taste-masking study revealed the taste masking efficiency of the ternary complex of cefuroxime with β-cyclodextrin. Conclusion: The developed binary and ternary complex of cefuroxime axetil based on β-cyclodextrin with PVP K-30 showed improved in vitro dissolution rate and taste masking in comparison to pure drug. The drug release was better in ternary complexes. The present research work successfully shows the utility of binary and ternary complexes for improving pharmaceutical characteristics of cefuroxime axetil.


2012 ◽  
Vol 9 (4) ◽  
pp. 2394-2406 ◽  
Author(s):  
Anil B. Zade ◽  
Pawan P. Kalbende ◽  
Mayuri S. Umekar ◽  
Gajanan W. Belsare

Cetyldimethylethylammonium bromide, a cationic surfactant has been used to decolorize eriochromeazurol B, an anionic triphenylmethane type of dye. Addition of specific lanthanide metal ion to this decolorized solution resulted into intense colored stable ternary complex with large bathochromic shift from 540 nm (binary complex) to 650 nm (ternary complex) with increase in absorbance values at shifted wavelength. CDMEAB thus decreases the color intensity of ECAB and increases the absorbance value of ternary complexes. This two fold advantage resulted into enhancement in molar absorptivities and sensitivities at shifted wavelength of ternary complexes with stoichiometric composition 1:(1:3)2, [Ln : (R:S)] for all lanthanides understudy namely yttrium, neodymium, europium, terbium and ytterbium. The ternary complexes at pH 6.0 exhibited absorption maxima at 650 nm with molar absorptivities 69000 L.mol-1.cm-2for Y(III), 66000 L.mol-1.cm-2for Nd(III), 69000 L.mol-1.cm-2for Eu(III), 64000 L.mol-1.cm-2for Tb(III), 70000 L.mol-1.cm-2for Yb(III). Beer's law were obeyed in concentration range 0.11-0.94, 0.19-1.53, 0.2-1.41, 0.21-1.69 and 0.23-1.11 ppm for Y(III), Nd(III), Eu(III), Tb(III) and Yb(III) respectively. Conditional formation constants and various analytical parameters have been evaluated and compared the results of newly formed ternary complexes with binary complexes. Finally newly suggested modified method have been recommended for the microdetermination of lanthanides understudy.


Sign in / Sign up

Export Citation Format

Share Document