divalent metal ions
Recently Published Documents


TOTAL DOCUMENTS

1012
(FIVE YEARS 129)

H-INDEX

64
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Weiyang Wang ◽  
Yibing Wang ◽  
Haoting Yi ◽  
Yang Liu ◽  
Guojing Zhang ◽  
...  

Rhamnogalacturonan lyase (RGL) cleaves backbone α-1,4 glycosidic bonds between L-rhamnose and D-galacturonic acid residues in type I rhamnogalacturonan (RG-I) by β-elimination to generate RG oligosaccharides with various degrees of polymerization. Here, we cloned, expressed, purified and biochemically characterized two RGLs (Bo3128 and Bo4416) in the PL11 family from Bacteroides ovatus ATCC 8483. Bo3128 and Bo4416 displayed maximal activity at pH 9.5 and pH 6.5, respectively. Whereas the activity of Bo3128 could be increased 1.5 fold in the presence of 5 mM Ca2+, Bo4416 required divalent metal ions to show any enzymatic activity. Both of RGLs showed a substrate preference for RG-I compared to other pectin domains. Bo4416 and Bo3128 primarily yielded unsaturated RG oligosaccharides, with Bo3128 also producing them with short side chains, with yields of 32.4 and 62.4%, respectively. Characterization of both RGLs contribute to the preparation of rhamnogalacturonan oligosaccharides, as well as for the analysis of the fine structure of RG-I pectins.


2022 ◽  
Author(s):  
Heyjin Son ◽  
Jaeil Park ◽  
You Hee Choi ◽  
Youngri Jung ◽  
Joong-Wook Lee ◽  
...  

CRISPR-Cas12a has been widely used in genome editing and nucleic acid detection. In both of these applications, Cas12a cleaves target DNA in a divalent metal ion-dependent manner. However, when and...


2021 ◽  
Vol 23 (1) ◽  
pp. 418
Author(s):  
Anna Janicka-Kłos ◽  
Hanna Czapor-Irzabek ◽  
Tomasz Janek

Mucin 7 (encoded byMUC7) is a human salivary protein that has a role in the natural immune system. Fragments of mucin 7 exhibit antimicrobial activity against bacteria and yeast. Although the antimicrobial properties of peptides have been known and studied for decades, the exact mechanism of action of antimicrobial peptides (AMPs) is still unclear. It is known that some AMPs require divalent metal ions to activate their activity. Herein, we investigated three 15-mer MUC7 peptides, one of which (mother peptide, sequence, L3) is a synthetic analog of a fragment naturally excised from MUC7 (with His3, His8, and His 14) and its two structural analogs, containing only two histidine residues, His3, His13 and His8, His13 (L2 and L1, respectively). Since there is a correlation between lipophilicity, the presence of metal ions (such as Cu(II) and Zn(II)) and antimicrobial activity of AMP, antimicrobial properties of the studied peptides, as well as their complexes with Cu(II) and Zn(II) ions, were tested for activity against Gram-positive (Enterococcus faecalis, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria and fungi (Candida albicans). The results were correlated with their lipophilicity. Coordination and thermodynamic studies (potentiometry, UV-Vis, CD) revealed the formation of mainly mononuclear complexes in solution for all studied systems with different stability in the physiological pH range.


2021 ◽  
Vol 14 (1) ◽  
pp. 54-63
Author(s):  
Yusuf Sabo ◽  
W.L.O. Jimoh ◽  
Isa Baba Koki ◽  
Q.O. Sholadoye

Stability constants of complexes of four divalent metal ions viz. Cu2+, Pb2+,Mg2+ and Cd2+  with humic acids (HA) were determined by potentiometric titration of humic acids with the corresponding salt of the divalent metals in aqueous media under non-acid-condition. The log K (logarithm of the stability constant) ranged from 1.0942 to 2.7471 for metal-humic acid complexes were determined using point-wise computational method. The order of stability constants were obtained as follows: Cu >Pb> Cd > Mg for metal -HA complexes respectively, indicating a higher degree of complexation with Cu metal ion. 


2021 ◽  
Author(s):  
Maria Maloverjan ◽  
Kart Padari ◽  
Aare Abroi ◽  
Ana Rebane ◽  
Margus Pooga

Cell-penetrating peptides (CPPs) are promising tools for transfection of various substances, including nucleic acids, into cells. The aim of current work was to search for novel safe and effective approaches for enhancing transfection efficiency of nanoparticles formed of CPP and splice-correcting oligonucleotide (SCO) without increasing the concentration of peptide. We analyzed an effect of inclusion of calcium and magnesium ions into nanoparticles on CPP-mediated transfection in cell culture. We also studied the mechanism of such transfection as well as its efficiency, applicability in case of different cell lines, nucleic acid types and peptides, and possible limitations. We discovered a strong positive effect of these ions on transfection efficiency of SCO, that translated to enhanced synthesis of functional reporter protein. We observed significant changes in intracellular distribution and trafficking of nanoparticles formed with addition of the ions, without increasing cytotoxicity. We propose a novel strategy of preparing CPP-oligonucleotide nanoparticles with enhanced efficiency and, thus, higher therapeutic potential. Our discovery may be translated to primary cell cultures and, possibly, in vivo studies, in the aim to increase CPP-mediated transfection efficiency and likelihood of using CPPs in clinics.


2021 ◽  
Vol 22 (23) ◽  
pp. 13114
Author(s):  
Mario García-Risco ◽  
Sara Calatayud ◽  
Veronika Pedrini-Martha ◽  
Ricard Albalat ◽  
Reinhard Dallinger ◽  
...  

Metallothioneins’ (MTs) biological function has been a matter of debate since their discovery. The importance to categorize these cysteine-rich proteins with high coordinating capacity into a specific group led to numerous classification proposals. We proposed a classification based on their metal-binding abilities, gradually sorting them from those with high selectivity towards Zn/Cd to those that are Cu-specific. However, the study of the NpeMT1 and NpeMT2isoforms of Nerita peloronta, has put a new perspective on this classification. N. peloronta has been chosen as a representative mollusk to elucidate the metal-binding abilities of Neritimorpha MTs, an order without any MTs characterized recently. Both isoforms have been recombinantly synthesized in cultures supplemented with ZnII, CdII, or CuII, and the purified metal–MT complexes have been thoroughly characterized by spectroscopic and spectrometric methods, leading to results that confirmed that Neritimorpha share Cd-selective MTs with Caenogastropoda and Heterobranchia, solving a so far unresolved question. NpeMTs show high coordinating preferences towards divalent metal ions, although one of them (NpeMT1) shares features with the so-called genuine Zn-thioneins, while the other (NpeMT2) exhibits a higher preference for Cd. The dissimilarities between the two isoforms let a window open to a new proposal of chemical MT classification.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yejin Lee ◽  
Yangwon Jeon ◽  
Guepil Jang ◽  
Youngdae Yoon

AbstractHeavy metal-responsive operons were used for the generation of Escherichia coli cell-based biosensors. The selectivity and specificity of the biosensors were determined based on the interaction between heavy metals and regulatory proteins; thereby, the modulating target selectivity of biosensors could be achieved by changing target sensing properties of regulatory proteins. The results of this study demonstrated that Pb(II)-sensing biosensors could be generated from an arsenic-responsive genetic system, which was originally used for arsenic-sensing biosensors. The amino acids around to As(III)-binding sites of ArsR were mutated and cysteine residues were relocated to modulate the metal selectivity. In addition, genes encoding metal ion-translocating P-type ATPases, such as copA and zntA, were deleted to enhance the specificity by increasing the intercellular levels of divalent metal ions. Based on the results, channel protein deleted E. coli cells harboring a pair of recombinant genes, engineered ArsR and arsAp::egfp, showed enhanced responses upon Pb exposure and could be used to quantify the amount of Pb(II) in artificially contaminated water and plants grown in media containing Pb(II). Although we focused on generating Pb(II)-specific biosensors in this study, the proposed strategy has a great potential for the generation of diverse heavy metal-sensing biosensors and risk assessment of heavy metals in environmental samples as well as in plants.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jongseo Park ◽  
Hyung-Seop Youn ◽  
Jun Yop An ◽  
Youngjin Lee ◽  
Soo Hyun Eom ◽  
...  

DNA polymerase plays a critical role in passing the genetic information of any living organism to its offspring. DNA polymerase from enterobacteria phage RB69 (RB69pol) has both polymerization and exonuclease activities and has been extensively studied as a model system for B-family DNA polymerases. Many binary and ternary complex structures of RB69pol are known, and they all contain a single polymerase-primer/template (P/T) DNA complex. Here, we report a crystal structure of the exonuclease-deficient RB69pol with the P/T duplex in a dimeric form at a resolution of 2.2 Å. The structure includes one new closed ternary complex with a single divalent metal ion bound and one new open binary complex in the pre-insertion state with a vacant dNTP-binding pocket. These complexes suggest that initial binding of the correct dNTP in the open state is much weaker than expected and that initial binding of the second divalent metal ion in the closed state is also much weaker than measured. Additional conformational changes are required to convert these complexes to high-affinity states. Thus, the measured affinities for the correct incoming dNTP and divalent metal ions are average values from many conformationally distinctive states. Our structure provides new insights into the order of the complex assembly involving two divalent metal ions. The biological relevance of specific interactions observed between one RB69pol and the P/T duplex bound to the second RB69pol observed within this dimeric complex is discussed.


Author(s):  
Suraj Kumar Mandal ◽  
Shankar Prasad Kanaujia

More than one third of proteins require metal ions to accomplish their functions, making them obligatory for the growth and survival of microorganisms in varying environmental niches. In prokaryotes, besides their involvement in various cellular and physiological processes, metal ions stimulate the uptake of citrate molecules. Citrate is a source of carbon and energy and is reported to be transported by secondary transporters. In Gram-positive bacteria, citrate molecules are transported in complex with divalent metal ions, whereas in Gram-negative bacteria they are translocated by Na+/citrate symporters. In this study, the presence of a novel divalent-metal-ion-complexed citrate-uptake system that belongs to the primary active ABC transporter superfamily is reported. For uptake, the metal-ion-complexed citrate molecules are sequestered by substrate-binding proteins (SBPs) and transferred to transmembrane domains for their transport. This study reports crystal structures of an Mg2+–citrate-binding protein (MctA) from the Gram-negative thermophilic bacterium Thermus thermophilus HB8 in both apo and holo forms in the resolution range 1.63–2.50 Å. Despite binding various divalent metal ions, MctA possesses the coordination geometry to bind its physiological metal ion, Mg2+. The results also suggest an extended subclassification of cluster D SBPs, which are known to bind and transport divalent-metal-ion-complexed citrate molecules. Comparative assessment of the open and closed conformations of the wild-type and mutant MctA proteins suggests a gating mechanism of ligand entry following an `asymmetric domain movement' of the N-terminal domain for substrate binding.


Sign in / Sign up

Export Citation Format

Share Document