Substituent Effects on the Base-Catalysed Hydrolysis of Phenyl Esters of ortho-Substituted Benzoic Acids

2001 ◽  
Vol 66 (5) ◽  
pp. 770-784 ◽  
Author(s):  
Ingrid Bauerová ◽  
Miroslav Ludwig

Fourteen model phenyl esters of 2-substituted benzoic acids were synthesised. Structures and purity of model compounds were confirmed by 1H and 13C NMR spectroscopy, as well as by HPLC and elemental analysis. Kinetics of base-catalysed hydrolysis of model phenyl esters occurring by the BAc2 mechanism were measured by UV spectrophotometry in 50% (v/v) aqueous dimethyl sulfoxide solutions at 25 °C under pseudo-first-order reaction conditions (c(NaOH) = 0.001-1.0 mol l-1). Linear relation between J-E and log kobs with the slope close to unity was found for all model compounds. Neither one-parameter nor multiparameter Hammett-type description of variability of experimental data obtained for phenyl esters of 2-substituted benzoic acids was found. Two groups (conjugating and non-conjugating) were created by division of ortho-substituents in ortho-position using the AISE theory, based on their interaction with the reaction centre.

2000 ◽  
Vol 65 (11) ◽  
pp. 1777-1790 ◽  
Author(s):  
Ingrid Bauerová ◽  
Miroslav Ludwig

Seventeen model phenyl esters of 4-substituted benzoic acids were synthesised by the reaction of substituted benzoyl chlorides with phenol in aqueous alkaline solutions (Schotten-Baumann reaction), in pyridine (Einhorn reaction), or by the reaction of substituted benzoic acids with phosphorus oxychloride. Structures and purity of the model compounds were confirmed by 1H NMR and 13C NMR spectroscopy as well as by HPLC and elemental analysis. Phenyl 4-aminobenzoate was synthesised by reduction of phenyl 4-nitrobenzoate in methanol on palladium. Kinetics of base-catalysed hydrolysis of model phenyl esters occurring by the BAc2 mechanism were measured by UV spectrophotometry in 50% (v/v) aqueous dimethyl sulfoxide solutions at 25 °C under pseudo-first-order conditions, (c[NaOH] = 0.001-1.0 mol l-1). The addition of OH- to phenyl benzoates was used to establish the kinetic J-E acidity scale. Linear relation between J-E and log kobs with the slope near unity was found for all the model compounds. The kinetic constants of hydrolysis of phenyl esters of 4-substituted benzoic acids precisely obey the Hammett relationship (σp) with ρ = 2.44. Quantitatively comparable results have been obtained by application of Alternative Interpretation of Substituent Effects theory (AISE) using the σi set of substituent constants.


2009 ◽  
Vol 74 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Signe Vahur ◽  
Oksana Travnikova ◽  
Ilmar A. Koppel

The second-order rate constants k (in dm3 mol–1 s–1) for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, have been measured spectrophotometrically in aqueous 0.5 and 2.25 M Bu4NBr at 25 °C. The substituent effects for para and meta derivatives were described using the Hammett relationship. For the ortho derivatives the Charton equation was used. For ortho-substituted esters two steric scales were involved: the EsB and the Charton steric (υ) constants. When going from pure water to aqueous 0.5 and 2.25 M Bu4NBr, the meta and para polar effects, the ortho inductive and resonance effects in alkaline hydrolysis of phenyl esters of substituted benzoic acids, became stronger nearly to the same extent as found for alkaline hydrolysis of C6H5CO2C6H4-X. The steric term of ortho-substituted esters was almost independent of the media considered. The rate constants of alkaline hydrolysis of ortho-, meta- and para-substituted phenyl benzoates (X-C6H4CO2C6H5, C6H5CO2C6H4-X) and alkyl benzoates, C6H5CO2R, in water, 0.5 and 2.25 M Bu4NBr were correlated with the corresponding IR stretching frequencies of carbonyl group, (ΔνCO)X.


2013 ◽  
Vol 11 (12) ◽  
pp. 1964-1975 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Ilmar Koppel

AbstractThe second-order rate constants k for the alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5, in aqueous 50.9% acetonitrile have been measured spectrophotometrically at 25°C. The log k values for meta and para derivatives correlated well with the Hammett σm,p substituent constants. The log k values for ortho-substituted phenyl benzoates showed good correlations with the Charton equation, containing the inductive, σI, resonance, σ○ R, and steric, E s B, and Charton υ substituent constants. For ortho derivatives the predicted (log k X)calc values were calculated with equation (log k ortho)calc = (log k H AN)exp + 0.059 + 2.19σI + 0.304σ○ R + 2.79E s B − 0.0164ΔEσI — 0.0854ΔEσ○ R, where DE is the solvent electrophilicity, ΔE = E AN — E H20 = −5.84 for aqueous 50.9% acetonitrile. The predicted (log k X)calc values for phenyl ortho-, meta- and para-substituted benzoates in aqueous 50.9% acetonitrile at 25°C precisely coincided with the experimental log k values determined in the present work.The substituent effects from the benzoyl moiety and aryl moiety were compared by correlating the log k values for the alkaline hydrolysis of phenyl esters of substituted benzoic acids, X-C6H4CO2C6H5, in various media with the corresponding log k values for substituted phenyl benzoates, C6H5CO2C6H4-X.


1994 ◽  
Vol 59 (9) ◽  
pp. 2005-2021 ◽  
Author(s):  
Oldřich Pytela ◽  
Josef Liška

The dissociation constants of nineteen ortho substituted benzoic acids have been determined in eight organic solvents (methanol, ethanol, acetone, dimethyl sulfoxide, dimethylformamide, acetonitrile, pyridine, 1,2-dichloroethane). The correlation between the σI, σR, and υ constants were unsuccessful due to neglecting the description of intramolecular hydrogen bond effect. The method of conjugated deviations has been applied to the results obtained and to those given in literature for ortho substituted benzoic acids (the dissociation constants, the reaction with diphenyldiazomethane, 33 sets), and values of three types of substituent constants have been determined for 29 substituents. The first of these substituent constants, σoi, describes the electronic effects and was adjusted with the application of the isoparameter relation (σoi as a function of σmi) suggested in previous communications. This constant (after excluding the substituents NHCOCH3 and OCOCH3) correlates very well (R = 0.993) with the σI and σR constants. The second substituent constant, σHGi, describes the interaction of the reaction centre (the oxygen atom of carboxylate anion) with the substituent, and it has non-zero values for the substituents OH, SH, NH2, NHCH3, NHCOCH3, COOH, CONH2, and SO2NH2. The third substituent constant, σSi, describes the steric effects and is not significantly related to any of the known quantities of this type. The set given was tested together with the triad of σI, σR, and υ on the definition set and on a set extended by other 28 sets of processes with ortho substituted compounds. On the whole, the set of substituent constants suggested explains 94.6% of variability of data, whereas only 66.0% are explained with the use of σI, σR, and u constants. Moreover, the tests have shown that the σoi constant is not suitable for interpretations of processes involving direct conjugation between the reaction centre and substituent.


1999 ◽  
Vol 64 (10) ◽  
pp. 1617-1628 ◽  
Author(s):  
Oldřich Pytela ◽  
Ondřej Prusek

Three model compounds have been selected to study the relationship between ortho and para substitution: benzoic acid, phenol, and aniline. Sixteen substituents have been chosen involving also those capable of potential interaction between ortho substituent and the reaction centre. For the combinations given, literature presents 25 pairs of data obtained by measuring a particular process for both the ortho and para substituted derivatives. The missing dissociation constants of 16 ortho substituted benzoic acids in water and ethanol and 16 para substituted benzoic acids in dimethyl sulfoxide and pyridine have been measured by potentiometric titration. The data matrices were submitted to analysis by the methods of projection of latent structures (PLS) and principal component analysis (PCA). It has been found that the substituent effects from ortho and para positions have the same character unless the ortho substituents interact with the reaction centre. Such interactions can change the experimentally found value by as much as 20% of its magnitude. The most significant interaction is a hydrogen bond formation. Out of the three models studied the most extensive interactions are present in benzoic acid, whereas almost none were observed in aniline. The capability of donation of electron pair to a hydrogen bond decreases in the substituent series COCH3 > SO2CH3 > NO2. The capability of donation of proton to a hydrogen bond with electron-pair donor decreases in the substituent series OH > NHCOCH3 ≈ SH > NH2 > SO2NH2.


1994 ◽  
Vol 59 (9) ◽  
pp. 2029-2041
Author(s):  
Oldřich Pytela ◽  
Taťjana Nevěčná

The kinetics of decomposition of 1,3-bis(4-methylphenyl)triazene catalyzed with 13 substituted benzoic acids of various concentrations have been measured in 25 vol.% aqueous methanol at 25.0 °C. The rate constants observed (297 data) have be used as values of independent variable in a series of models of the catalyzed decomposition. For the catalytic particles were considered the undissociated acid, its conjugated base, and the proton in both the specific and general catalyses. Some models presumed formation of reactive or nonreactive complexes of the individual reactants. The substituent effect is described by the Hammett equation. The statistically best model in which the observed rate constant is a superposition of a term describing the dependence on proton concentration and a term describing the dependence on the product of concentrations of proton and conjugated base is valid with the presumption of complete proton transfer from the catalyst acid to substrate, which has been proved. The behaviour of 4-dimethylamino, 4-amino, and 3-amino derivatives is anomalous (lower catalytic activity as compared with benzoic acid). This supports the presumed participation of conjugated base in the title process.


1995 ◽  
Vol 60 (8) ◽  
pp. 1316-1332 ◽  
Author(s):  
Oldřich Pytela ◽  
Aleš Halama

The paper deals with chemometric analysis of the inductive effect. The notion of inductive effect is discussed, and unambiguous definitions are given for the notions of triad: reaction centre-basic skeleton-substituent, and the therewith connected definitions of inductive effect. For a quantitative description of inductive effect 7 types of chemical models were selected including noncyclic compounds, cyclic, and bicyclic compounds, derivatives of quinuclidine, 3-substituted benzoic acids, sulfonamides and pyridines. Altogether 139 sets of experimental data from literature have been used including altogether 1 294 points (9.3 points per set, 5 points at least) reflecting substituent effects of 34 substituents. It has been found that for a standard model the dissociation of substituted bicycloalkanecarboxylic acids only is satisfactory, all the other models reflecting also the mesomeric effects to variable extent (up to 10%). A distinctly different substitution behaviour was observed with 19F and 13C NMR chemical shifts of 4-substituted 1-fluoro- or 1-methylbicyclo[2.2.2]octanes. The earlier suggested model of substituent effects based on different way of transmission of substituent effects (3 classes) has been used for separating the inductive and mesomeric effects: it is mathematically presented as a set of straight lines with the intersection point at the so-called isoeffect substituent constant. Using the modified method of conjugated deviations a chemometric scale has been created for the inductive effect which agrees very well with the conventional scales given in literature; the only differences were observed for F and CH=O substituents (which are overestimated and underestimated, respectively, in literature). In the context given the inductive effect appears as a fundamental quantity forming a basis for quantitative description of other effects transferred by electrons.


2006 ◽  
Vol 71 (1) ◽  
pp. 107-128 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Vahur Mäemets ◽  
Ilmar Koppel

The second-order rate constants k2 for alkaline hydrolysis of phenyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2C6H5 (X = H, 3-Cl, 3-NO2, 3-CH3, 4-NO2, 4-Cl, 4-F, 4-CH3, 4-OCH3, 4-NH2, 2-NO2, 2-CN, 2-F, 2-Cl, 2-Br, 2-I, 2-CH3, 2-OCH3, 2-CF3, 2-NH2), and of substituted phenyl esters of benzoic acid, C6H5CO2C6H4-X (X = 2-I, 2-CF3, 2-C(CH3)3, 4-Cl, 4-CH3, 4-OCH3, 4-NH2), have been measured spectrophotometrically in water at 25 °C. The substituent effect in alkaline hydrolysis of phenyl esters of para-substituted benzoic acids, similar to that for ethyl esters of para-substituted benzoic acids, was found to be precisely described by the Hammett relationship (ρ = 1.7 in water). The log k value for alkaline hydrolysis of phenyl and ethyl esters of meta-, para- and ortho-substituted benzoic acids, X-C6H4CO2R, was nicely correlated with log km,p,ortho = log ko + (ρ)m,pσ + (ρI)orthoσI + (ρ°R)orthoσ°R + δorthoEsB where σ, σI, σ°R are the Hammett polar, Taft inductive and Taft resonance (σ°R = σ° - σI) substituent constants, respectively. EsB is the steric scale for ortho substituents calculated on the basis of the log k values for the acid hydrolysis of ortho- substituted phenyl benzoates in water owing to the ortho substituent in the phenyl of phenyl benzoates. In water, the main factors responsible for changes in the ortho substituent effect in alkaline hydrolysis of phenyl and ethyl esters of ortho-substituted benzoic acids, X-C6H4CO2R, were found to be the inductive and steric factors while the role of the resonance term was negligible ((ρ°R)ortho ca. 0.3). In alkaline hydrolysis of substituted benzoates in neat water, the ortho inductive effect appeared to be 1.5 times and steric influence 2.7 times higher than the corresponding influences from the ortho position in the phenyl of phenyl benzoates. The contributions of the steric effects in alkaline hydrolysis of esters of ortho-substituted benzoic acids was found to be approximately the same as in acid hydrolysis of esters of ortho-substituted benzoic and acid esterification of ortho-substituted benzoic acids.


Sign in / Sign up

Export Citation Format

Share Document