In vitro evaluation of delays in the adjustment of the fraction of inspired oxygen during CPAP: effect of flow and volume

Author(s):  
Christoph E. Schwarz ◽  
Gordon Lightbody ◽  
Ingo Müller-Hansen ◽  
Jörg Arand ◽  
Christian F. Poets ◽  
...  

BackgroundAdjusting the fraction of inspired oxygen (FiO2) delivered to preterm infants to keep their oxygen saturation within target range remains challenging. Closed-loop automated FiO2 control increases the time infants spend within the assigned target range. The delay with which FiO2 adjustments at the ventilator result in a change in the inspired gas limits the performance of both manual and automated controls.ObjectiveTo evaluate the equilibration time (Teq) between FiO2 adjustments and changes in FiO2 reaching the patient.MethodsIn vitro determination of the delay in FiO2 adjustments at the ventilator at 5 and 8 L/min of gas flow and two different humidifier/ventilator circuit volumes (840 and 432 mL).ResultsTeq values were 31, 23, 20 and 17 s for the volume–flow combinations 840 mL+5 L/min, 840 mL+8 L/min, 432 mL+5 L/min and 432 mL+8 L/min, respectively.ConclusionThe identified delay seems clinically relevant and should be taken into account during manual and automatic control of FiO2.

2001 ◽  
Vol 94 (3) ◽  
pp. 457-460 ◽  
Author(s):  
Harvey J. Woehlck ◽  
David Mei ◽  
Marshall B. Dunning ◽  
Franklin Ruiz

Background Carbon monoxide (CO) is produced by reaction of isoflurane, enflurane, and desflurane in desiccated carbon dioxide absorbents. The inspiratory CO concentration depends on the dryness and identity of the absorbent and anesthetic. The adaptation of existing mathematical models to a rebreathing circuit allows identification of patient factors that predispose to more severe exposures, as identified by carboxyhemoglobin concentration. Methods From our companion study, the authors used quantitative in vitro CO production data for 60 min at 7.5% desflurane or 1.5% isoflurane at 1 l/min fresh gas flow. The carboxyhemoglobin concentration was calculated by iteratively solving the Coburn Forster Kane equation modified for a rebreathing system that incorporates the removal of CO by patient absorption. Demonstrating good fit of predicted carboxyhemoglobin concentrations to published data from animal and human exposures validated the model. Carboxyhemoglobin concentrations were predicted for exposures of various severity, patients of different sizes, hematocrit, and fraction of inspired oxygen. Results The calculated carboxyhemoglobin concentrations closely predicted the experimental results of other investigators, thereby validating the model. These equations indicate the severity of CO poisoning is inversely related to the hemoglobin quantity of a subject. Fraction of inspired oxygen had the greatest effect in patients of small size with low hematocrit values, where equilibrium and not the rate of uptake determined carboxyhemoglobin concentrations. Conclusion This model predicts that patients with low hemoglobin quantities will have more severe CO exposures based on the attainment of a higher carboxyhemoglobin concentration. This includes patients of small size (pediatric population) and patients with anemia.


2003 ◽  
Vol 125 (6) ◽  
pp. 1058-1066 ◽  
Author(s):  
John D. Wright ◽  
Michael R. Moldover ◽  
Aaron N. Johnson ◽  
Akisato Mizuno

A new pressure, volume, temperature, and time (PVTt) primary gas flow standard for calibrating flowmeters has an expanded uncertainty k=2 of between 0.02% and 0.05%. The standard diverts a steady flow into a collection tank of known volume during a measured time interval. The standard spans the flow range of 1 slm1 to 2000 slm using two collection tanks (34 L and 677 L) and two flow diversion systems. We describe the novel features of the standard and analyze its uncertainty. The thermostatted collection tank allows determination of the average gas temperature to 7 mK (0.0023%) within an equilibration time of 20 min. We developed a mass cancellation procedure that reduced the uncertainty contributions from the inventory volume to 0.017% at the highest flow rate. Flows were independently measured throughout the overlapping flow range of the two systems and they agreed within 0.015 %. The larger collection system was evaluated at high flows by comparing single and double diversions; the maximum difference was 0.0075%.


2014 ◽  
Vol 15 (1) ◽  
Author(s):  
Soo Min Jang ◽  
Katie E Cardone ◽  
Thomas D Nolin ◽  
Darius L Mason ◽  
Darren W Grabe
Keyword(s):  

2020 ◽  
Vol 30 (4) ◽  
Author(s):  
Mohammad Reza Moradi ◽  
Sharareh R. Niakan Kalhori ◽  
Marian Ghazi Saeedi ◽  
Mohammad Reza Zarkesh ◽  
Abbas Habibelahi ◽  
...  

Background: Different automated systems have been developed to improve the maintenance of target range of arterial oxygen saturation (SPO2) in premature infants with respiratory distress. Objectives: This study aimed to develop a remote closed-loop automatic oxygen control (RCLAC) as an efficient monitoring device. Then the means of the fraction of inspired oxygen (FIO2) and SPO2 by routine manual control (RMC) and RCLAC were compared. Methods: A developmental-descriptive study was carried out in an Iranian hospital (Tehran, Iran; 2015 - 2017). Twenty-two preterm infants with gestational age 24 - 28 weeks entered the study. A database was prepared based on pulse oximeter parameters. A Wi-Fi module was implemented to receive data from a pulse oximeter and send inputs to the user’s mobile. Vibrate alarm was implemented for high or low FIO2. After receiving notifications associated with an increase or decrease of FIO2 levels and user’s confirmation; the alterations were applied on the ventilator. Results: The mean FIO2 in the RMC system was significantly higher than the RCLAC system (98.1 ± 2.67 vs 79.5 ± 16.03; P = 0.0001). According to the results, when the SPO2 reached close to target SPO2 range and consequently FIO2 changed (decreased or increased based on target SPO2), heart rate showed a regular beating with a decrease in the numbers. Conclusions: Remote closed-loop automatic oxygen control system as a simple device could prevent preterm neonates from sustained hypo-hyperoxemic and arrhythmia episodes. Moreover, by using RCLAC, there was no need for continuous monitoring that may reduce the workload of NICU medical staff. Collecting reliable data and recording information in digital forms were also other benefits. Further studies with larger sample size are strongly suggested.


Author(s):  
R Whalley ◽  
A Abdul-Ameer

The distributed parameter modelling of the gas flow through long pipelines is considered. Procedures which incorporate the gas stream energy storage, the pipeline frictional resistance and pressure attenuation characteristics are introduced. The pipeline input–output, transfer function, pressure and volume flow representations are formulated. An optimum, least effort, closed loop regulation strategy is proposed. Frequency response techniques are invoked enabling the derivation of simple, robust control algorithms. Confirmation of the results obtained, from the transient response computation of the outputs following input reference and load disturbance changes, are presented. The accuracy and novelty of the approach presented is commented upon.


Author(s):  
Sebastian Major ◽  
Nenad Gajovic-Eichelmann ◽  
Johannes Woitzik ◽  
Jens P. Dreier

Abstract Background Spreading depolarization (SD) and the initial, still reversible phase of neuronal cytotoxic edema in the cerebral gray matter are two modalities of the same process. SD may thus serve as a real-time mechanistic biomarker for impending parenchyma damage in patients during neurocritical care. Using subdural platinum/iridium (Pt/Ir) electrodes, SD is observed as a large negative direct current (DC) shift. Besides SD, there are other causes of DC shifts that are not to be confused with SD. Here, we systematically analyzed DC artifacts in ventilated patients by observing changes in the fraction of inspired oxygen. For the same change in blood oxygenation, we found that negative and positive DC shifts can simultaneously occur at adjacent Pt/Ir electrodes. Methods Nurses and intensivists typically increase blood oxygenation by increasing the fraction of inspired oxygen at the ventilator before performing manipulations on the patient. We retrospectively identified 20 such episodes in six patients via tissue partial pressure of oxygen (ptiO2) measurements with an intracortical O2 sensor and analyzed the associated DC shifts. In vitro, we compared Pt/Ir with silver/silver chloride (Ag/AgCl) to assess DC responses to changes in pO2, pH, or 5-min square voltage pulses and investigated the effect of electrode polarization on pO2-induced DC artifacts. Results Hyperoxygenation episodes started from a ptiO2 of 37 (30–40) mmHg (median and interquartile range) reaching 71 (50–97) mmHg. During a total of 20 episodes on each of six subdural Pt/Ir electrodes in six patients, we observed 95 predominantly negative responses in six patients, 25 predominantly positive responses in four patients, and no brain activity changes. Adjacent electrodes could show positive and negative responses simultaneously. In vitro, Pt/Ir in contrast with Ag/AgCl responded to changes in either pO2 or pH with large DC shifts. In response to square voltage pulses, Pt/Ir falsely showed smaller DC shifts than Ag/AgCl, with the worst performance under anoxia. In response to pO2 increase, Pt/Ir showed DC positivity when positively polarized and DC negativity when negatively polarized. Conclusions The magnitude of pO2-induced subdural DC shifts by approximately 6 mV was similar to that of SDs, but they did not show a sequential onset at adjacent recording sites, could be either predominantly negative or positive in contrast with the always negative DC shifts of SD, and were not accompanied by brain activity depression. Opposing polarities of pO2-induced DC artifacts may result from differences in baseline electrode polarization or subdural ptiO2 inhomogeneities relative to subdermal ptiO2 at the quasi-reference.


Author(s):  
Filip Neuls ◽  
Jakub Krejci ◽  
Ales Jakubec ◽  
Michal Botek ◽  
Michal Valenta

This study focuses on the determination of the vagal threshold (Tva) during exercise with increasing intensity in normoxia and normobaric hypoxia. The experimental protocol was performed by 28 healthy men aged 20 to 30 years. It included three stages of exercise on a bicycle ergometer with a fraction of inspired oxygen (FiO2) 20.9% (normoxia), 17.3% (simulated altitude ~1500 m), and 15.3% (~2500 m) at intensity associated with 20% to 70% of the maximal heart rate reserve (MHRR) set in normoxia. Tva level in normoxia was determined at exercise intensity corresponding with (M ± SD) 45.0 ± 5.6% of MHRR. Power output at Tva (POth), representing threshold exercise intensity, decreased with increasing degree of hypoxia (normoxia: 114 ± 29 W; FiO2 = 17.3%: 110 ± 27 W; FiO2 = 15.3%: 96 ± 32 W). Significant changes in POth were observed with FiO2 = 15.3% compared to normoxia (p = 0.007) and FiO2 = 17.3% (p = 0.001). Consequentially, normoxic %MHRR adjusted for hypoxia with FiO2 = 15.3% was reduced to 39.9 ± 5.5%. Considering the convenient altitude for exercise in hypoxia, POth did not differ excessively between normoxic conditions and the simulated altitude of ~1500 m, while more substantial decline of POth occurred at the simulated altitude of ~2500 m compared to the other two conditions.


Sign in / Sign up

Export Citation Format

Share Document