Classification of orbital morphology for decompression surgery in Graves’ orbitopathy: two-dimensional versus three-dimensional orbital parameters

2013 ◽  
Vol 97 (5) ◽  
pp. 659-662 ◽  
Author(s):  
Farzad Borumandi ◽  
Beat Hammer ◽  
Hansrudi Noser ◽  
Lukas Kamer
Author(s):  
E. Hellner

AbstractA systematic description and classification of inorganic structure types is proposed on the basis of homogeneous or heterogeneous point configurations (Bauverbände) described by invariant lattice complexes and coordination polyhedra; subscripts or matrices explain the transformation of the complexes in respect (M) to their standard setting; the value of the determinant of the transformation matrix defines the order of the complex. The Bauverbände (frameworks) may be described by three-dimensional networks or two-dimensional nets explicitely shown with structures types of the


2019 ◽  
Vol 27 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Thanat Kanthawang ◽  
Tanawat Vaseenon ◽  
Patumrat Sripan ◽  
Nuttaya Pattamapaspong

1977 ◽  
Vol 25 (7) ◽  
pp. 633-640 ◽  
Author(s):  
J K Mui ◽  
K S Fu ◽  
J W Bacus

The classification of white blood cell neutrophils into band neutrophils (bands) and segmented neutrophils (segs) is a subproblem of the white blood cell differential count. This classification problem is not well defined for at least two reasons: (a) there are no unique quantitative definitions for bands and segs and (b) existing definitions use the shape of the nucleus as the only discriminating criterion. When cells are classified on a slide, decisions are made from the two-dimensional views of these three-dimensional cells. A problem arises because the exact shape of the nucleus becomes indeterminate when the nucleus overlaps so that the filament is hidden. To assess the importance of this problem, this paper quantitates the classification errors due to overlapped nuclei (ON). The results indicate that, using only neutrophils without ON, the classification accuracy is 89%. For neutrophils with ON, the classification accuracy is 65%. This suggests a classification strategy of first classifying neutrophils into three categories: (a) bands without ON, (b) segs without ON and (c) neutrophils with ON. Category III can then be further classified into segs and bands by other stretegies.


2017 ◽  
Vol 60 (2) ◽  
pp. 435-445
Author(s):  
VLADIMIR SHCHIGOLEV ◽  
DMITRY STEPANOV

AbstractThis paper is a complement to the work of the second author on modular quotient singularities in odd characteristic. Here, we prove that if V is a three-dimensional vector space over a field of characteristic 2 and G < GL(V) is a finite subgroup generated by pseudoreflections and possessing a two-dimensional invariant subspace W such that the restriction of G to W is isomorphic to the group SL2(𝔽2n), then the quotient V/G is non-singular. This, together with earlier known results on modular quotient singularities, implies first that a theorem of Kemper and Malle on irreducible groups generated by pseudoreflections generalizes to reducible groups in dimension three, and, second, that the classification of three-dimensional isolated singularities that are quotients of a vector space by a linear finite group reduces to Vincent's classification of non-modular isolated quotient singularities.


2021 ◽  
Vol 11 (9) ◽  
pp. 4131
Author(s):  
Moon Inder Singh ◽  
Mandeep Singh

The challenge to develop an affective Brain Computer Interface requires the understanding of emotions psychologically, physiologically as well as analytically. To make the analysis and classification of emotions possible, emotions have been represented in a two-dimensional or three-dimensional space represented by arousal and valence domains or arousal, valence and dominance domains, respectively. This paper presents the classification of emotions into four classes in an arousal–valence plane using the orthogonal nature of emotions. The average Event Related Potential (ERP) attributes and differential of average ERPs acquired from the frontal region of 24 subjects have been used to classify emotions into four classes. The attributes acquired from the frontal electrodes, viz., Fp1, Fp2, F3, F4, F8 and Fz, have been used for developing a classifier. The four-class subject-independent emotion classification results in the range of 67–83% have been obtained. Using three classifiers, a mid-range accuracy of 85% has been obtained, which is considerably better than existing studies on ERPs.


2014 ◽  
Vol 70 (4) ◽  
pp. 319-337 ◽  
Author(s):  
S. T. Hyde ◽  
S. J. Ramsden ◽  
V. Robins

The concept of an orbifold is particularly suited to classification and enumeration of crystalline groups in the euclidean (flat) plane and its elliptic and hyperbolic counterparts. Using Conway's orbifold naming scheme, this article explicates conventional point, frieze and plane groups, and describes the advantages of the orbifold approach, which relies on simple rules for calculating the orbifold topology. The article proposes a simple taxonomy of orbifolds into seven classes, distinguished by their underlying topological connectedness, boundedness and orientability. Simpler `crystallographic hyperbolic groups' are listed, namely groups that result from hyperbolic sponge-like sections through three-dimensional euclidean space related to all known genus-three triply periodic minimal surfaces (i.e.theP,D,Gyroid,CLPandHsurfaces) as well as the genus-fourI-WPsurface.


Author(s):  
Alexey O. Kazakov ◽  
Efrosiniia Y. Karatetskaia ◽  
Alexander D. Kozlov ◽  
Klim A. Safonov

For three-dimensional dynamical systems with continuous time (flows), a classification of strange homoclinic attractors containing an unique saddle equilibrium state is constructed. The structure and properties of such attractors are determined by the triple of eigenvalues of the equilibrium state. The method of a saddle charts is used for the classification of homoclinic attractors. The essence of this method is in the construction of an extended bifurcation diagram for a wide class of three-dimensional flows (whose linearization matrix is written in the Frobenius form). Regions corresponding to different configurations of eigenvalues are marked in this extended bifurcation diagram. In the space of parameters defining the linear part of the considered class of three-dimensional flows bifurcation surfaces bounding 7 regions are constructed. One region corresponds to the stability of the equilibrium states while other 6 regions correspond to various homoclinic attractors of the following types: Shilnikov attractor, 2 types of spiral figure-eight attractors, Lorenz- like attractor, saddle Shilnikov attractor and attractor of Lyubimov-Zaks-Rovella. The paper also discusses questions related to the pseudohyperbolicity of homoclinic attractors of three-dimensional flows. It is proved that only homoclinic attractors of two types can be pseudohyperbolic: Lorenz-like attractors containing a saddle equilibrium with a two-dimensional stable manifold whose saddle value is positive and saddle Shilnikov attractors containing a saddle equilibrium state with a two-dimensional unstable manifold.


Sign in / Sign up

Export Citation Format

Share Document