SITA-Standard perimetry has better performance than FDT2 matrix perimetry for detecting glaucomatous progression

2018 ◽  
Vol 102 (10) ◽  
pp. 1396-1401
Author(s):  
Michael Wall ◽  
Chris A Johnson ◽  
K D Zamba

PurposeThe Humphrey Matrix (FDT2) may be more sensitive in detecting glaucomatous visual field loss than SITA standard automated perimetry (SAP) performed on the Humphrey Field Analyzer (HFA). Therefore, FDT may be a good candidate to determine disease progression in patients with glaucoma. Our aim was to test the hypothesis that automated perimetry using the FDT2 would be equal to, or more effective than, HFA SITA-Standard, in identifying glaucomatous progression.MethodsOne hundred and twenty patients with glaucoma were tested twice at baseline and every 6 months for 4 years with HFA SITA-Standard and FDT2. FDT2 values were standardised to HFA SAP values. We used pointwise linear regression (PLR) over the full data series to identify glaucomatous progression and generated an array of results using three different criteria: (1) three or more clustered test locations progressing, (2) three or more non-clustered test locations progressing and (3) total number of progressing test locations. We compared HFA SAP and FDT2 for the number of locations signalled by the PLR detection algorithm.ResultsRegardless of the criteria, HFA SAP with SITA-Standard testing detected visual field progression at a higher rate than the FDT2 overall (P<0.001).ConclusionHFA SAP identifies glaucomatous visual field progression at a rate at least as high if not higher than FDT2.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Samuel I. Berchuck ◽  
Sayan Mukherjee ◽  
Felipe A. Medeiros

AbstractIn this manuscript we develop a deep learning algorithm to improve estimation of rates of progression and prediction of future patterns of visual field loss in glaucoma. A generalized variational auto-encoder (VAE) was trained to learn a low-dimensional representation of standard automated perimetry (SAP) visual fields using 29,161 fields from 3,832 patients. The VAE was trained on a 90% sample of the data, with randomization at the patient level. Using the remaining 10%, rates of progression and predictions were generated, with comparisons to SAP mean deviation (MD) rates and point-wise (PW) regression predictions, respectively. The longitudinal rate of change through the VAE latent space (e.g., with eight dimensions) detected a significantly higher proportion of progression than MD at two (25% vs. 9%) and four (35% vs 15%) years from baseline. Early on, VAE improved prediction over PW, with significantly smaller mean absolute error in predicting the 4th, 6th and 8th visits from the first three (e.g., visit eight: VAE8: 5.14 dB vs. PW: 8.07 dB; P < 0.001). A deep VAE can be used for assessing both rates and trajectories of progression in glaucoma, with the additional benefit of being a generative technique capable of predicting future patterns of visual field damage.


2018 ◽  
Vol 28 (5) ◽  
pp. 481-490 ◽  
Author(s):  
Paolo Fogagnolo ◽  
Maurizio Digiuni ◽  
Giovanni Montesano ◽  
Chiara Rui ◽  
Marco Morales ◽  
...  

Background: Compass (CenterVue, Padova, Italy) is a fundus automated perimeter which has been introduced in the clinical practice for glaucoma management in 2014. The aim of the article is to review Compass literature, comparing its performances against Humphrey Field Analyzer (Zeiss Humphrey Systems, Dublin, CA, USA). Results: Analyses on both normal and glaucoma subjects agree on the fact that Humphrey Field Analyzer and Compass are interchangeable, as the difference of their global indices is largely inferior than test -retest variability for Humphrey Field Analyzer. Compass also enables interesting opportunities for the assessment of morphology, and the integration between morphology and function on the same device. Conclusion: Visual field testing by standard automated perimetry is limited by a series of intrinsic factors related to the psychophysical nature of the examination; recent papers suggest that gaze tracking is closely related to visual field reliability. Compass, thanks to a retinal tracker and to the active dislocation of stimuli to compensate for eye movements, is able to provide visual fields unaffected by fixation instability. Also, the instrument is a true colour, confocal retinoscope and obtains high-quality 60° × 60° photos of the central retina and stereo-photos details of the optic nerve. Overlapping the image of the retina to field sensitivity may be useful in ascertaining the impact of comorbidities. In addition, the recent introduction of stereoscopic photography may be very useful for better clinical examination.


2013 ◽  
Vol 131 (12) ◽  
pp. 1565 ◽  
Author(s):  
Tony Redmond ◽  
Neil O’Leary ◽  
Donna M. Hutchison ◽  
Marcelo T. Nicolela ◽  
Paul H. Artes ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinho Lee ◽  
Yong Woo Kim ◽  
Ahnul Ha ◽  
Young Kook Kim ◽  
Ki Ho Park ◽  
...  

AbstractVisual field assessment is recognized as the important criterion of glaucomatous damage judgement; however, it can show large test–retest variability. We developed a deep learning (DL) algorithm that quantitatively predicts mean deviation (MD) of standard automated perimetry (SAP) from monoscopic optic disc photographs (ODPs). A total of 1200 image pairs (ODPs and SAP results) for 563 eyes of 327 participants were enrolled. A DL model was built by combining a pre-trained DL network and subsequently trained fully connected layers. The correlation coefficient and mean absolute error (MAE) between the predicted and measured MDs were calculated. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the detection ability for glaucomatous visual field (VF) loss. The data were split into training/validation (1000 images) and testing (200 images) sets to evaluate the performance of the algorithm. The predicted MD showed a strong correlation and good agreement with the actual MD (correlation coefficient = 0.755; R2 = 57.0%; MAE = 1.94 dB). The model also accurately predicted the presence of glaucomatous VF loss (AUC 0.953). The DL algorithm showed great feasibility for prediction of MD and detection of glaucomatous functional loss from ODPs.


Sign in / Sign up

Export Citation Format

Share Document