scholarly journals Critical components of neuromuscular training to reduce ACL injury risk in female athletes: meta-regression analysis

2016 ◽  
Vol 50 (20) ◽  
pp. 1259-1266 ◽  
Author(s):  
Dai Sugimoto ◽  
Gregory D Myer ◽  
Kim D Barber Foss ◽  
Michael J Pepin ◽  
Lyle J Micheli ◽  
...  
2019 ◽  
Vol 41 (02) ◽  
pp. 113-118
Author(s):  
Gabrielle Gilmer ◽  
Gretchen D. Oliver

AbstractRecently, an emphasis has been placed on understanding how ovarian sex hormones and hormonal contraceptives affect risk for anterior cruciate ligament (ACL) injury. The literature presents large discrepancies in whether or not hormonal contraceptives affect ACL injury risk; therefore, the purpose of this study was to evaluate whether vertical ground reaction force (GRF) and knee valgus force are different between athletes who do and do not use hormonal contraceptives. Twenty-two female athletes volunteered to participate and were divided into two groups based on their answers to a health history questionnaire: those who use hormonal contraceptives and those who do not. Participants performed a drop vertical jump (DVJ) and single leg crossover dropdown (SCD) at two different time points in their menstrual cycle (pre-ovulatory phase and mid-luteal phase). Kinetic data were collected at 1000 Hz. Independent samples t-tests revealed no significant differences between groups in vertical GRF and knee valgus force at both time points. Findings from this study suggest that hormonal contraceptives do not elicit detectable changes in vertical GRF and knee valgus force. Ultimately, this calls for further studies on the relationship between hormones and ACL injury risk and physicians to consider hormonal screening in addition to neuromuscular and biomechanical screening.


2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0002 ◽  
Author(s):  
Jed A. Diekfuss ◽  
Dustin R. Grooms ◽  
Kim Barber Foss ◽  
Scott Bonnette ◽  
Chris Dicesare ◽  
...  

Background: Anterior cruciate ligament (ACL) injury is associated with alterations in the central nervous system and resultant sensorimotor control (Courtney et al., 2005; Grooms et al., 2017). Our prospective data indicates that altered knee-motor functional brain connectivity is associated with increased risk for ACL injury (Diekfuss et al., revisions invited), revealing novel neural targets for neuromuscular training interventions. Specifically, interventions that integrate concomitant sensorimotor feedback with injury prevention techniques have the potential to enhance brain functional connectivity to optimize ACL injury risk reduction strategies. To deliver concomitant sensorimotor feedback, we have developed an augmented neuromuscular training (aNMT) system that utilizes interactive, real-time biofeedback to simultaneously target multiple biomechanical variables associated with ACL injury risk (Bonnette et al., in press; Figure 1A). aNMT calculates and maps key biomechanical parameters to an interactive graphical shape that responds in real time as a function of participants’ movements. Participants are instructed to perform exercises to achieve a goal shape, which equates to producing biomechanical parameters associated with ACL injury risk reduction, while deviations toward injury risk factors result in specific shape distortions. We hypothesized that aNMT would significantly improve biomechanics associated with ACL injury risk and also increase knee-motor functional connectivity. We further predicted that the identified connectivity changes would be associated with the hypothesized changes in biomechanics. Methods: Over six weeks of training, participants (n = 25) performed a series of aNMT-based progressive exercises (e.g., squat, overhead squat, squat jump, tuck jump, single-leg Romanian dead lift, pistol squat) and completed a drop vertical jump (DVJ) task while fully instrumented for 3D motion analysis pre- and post-training. Peak knee abduction moment (pKAM; bilateral average) from the DVJ was used as the biomechanical outcome variable. Resting-state functional magnetic resonance imaging (fMRI) scans were also collected pre- and post-training on a subset of the cohort (n = 17). Thirteen additional participants were recruited to serve as untrained controls and completed the DVJ and resting-state fMRI on two testing sessions separated by approximately 6 weeks. Twenty-five knee-motor regions of interest (ROIs) were created based on the areas of brain activation derived from previously published data (Grooms et al., 2015; Kapreli et al., 2007). Paired-samples t tests with a false discovery rate correction for multiple comparisons determined differences in functional connectivity among these 25 ROIs (post > pre). Fisher-transformed Pearson correlation coefficients between the average residual blood oxygen level dependent (BOLD) signal time series extracted from ROIs that demonstrated significant group level changes were associated with pKAM in DVJ task at pre- and post-training. The pre- and post-training Pearson correlation coefficients were subsequently compared using the cocor package (Diedenhofen & Musch, 2015) to determine if the two relationships were significantly different. Results: Results showed that pKAM in the aNMT group was significantly lower following aNMT (p < .05), while no significant changes were found between the two time points for controls (p > .05). Results also revealed significantly greater functional connectivity between the right supplementary motor area (SMA) and the left thalamus at post-training relative to pre-training for the aNMT group, t(16) = 3.37, p = .04 (Figure 1B). No significant differences between the two time points were observed for the controls (all p > .05). The association between pKAM and the right SMA and left thalamus at pre-training (r = -.22; Figure 1C) was significantly different compared to that at post-training (r = .26; Figure 1D), p < .05, with a positive relationship between pKAM and SMA and thalamus activation following aNMT biofeedback. No similar changes in pKAM and right SMA and left thalamus connectivity were observed for the untrained controls, p > .05. Conclusions/Significance: The right SMA is involved in the planning and coordination of movement, and the left thalamus is associated with neuromotor control. The increased functional connectivity between these regions, combined with the reduction in pKAM, which is associated with reduced risk of ACL injury, indicate a possible neural mechanism for improved motor adaption associated with aNMT biofeedback. These findings have distinct implications for ACL injury prevention strategies. Biofeedback tools such as aNMT can be designed to target specifically the neural drivers of aberrant movement biomechanics underlying increased ACL injury risk. [Figure: see text]


2004 ◽  
Vol 36 (Supplement) ◽  
pp. S287 ◽  
Author(s):  
Timothy E. Hewett ◽  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Robert S. Heidt ◽  
Angelo J. Colosimo ◽  
...  

2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0012
Author(s):  
Sean Higinbotham ◽  
Ryan S. Wexler ◽  
Danny Blake ◽  
Carlie Harrison ◽  
Justin Hollenbeck ◽  
...  

Background: Scientific studies have shown female soccer athletes to be 3 times more likely to injure their anterior cruciate ligament (ACL) than their male counterparts and the majority of these injuries are from a non-contact mechanism. The biomechanical factors of this phenomenon have been extensively studied in a laboratory-based setting, but there has been little progress in reducing the incidence of ACL injury in young female athletes. It is plausible, therefore, to suggest that the biomechanical improvements noted in a laboratory-based setting do not directly translate to a field-based setting. Preventive neuromuscular training programs are typically field-based and have been shown to be an effective intervention for reducing ACL injury risk by improving dynamic, frontal-plane knee stability. However, these programs are time consuming and prone to compliance and implementation issues. For these reasons, researchers have attempted to identify the minimum viable training program or wearable device that can be studied in the field using video cameras to determine their influence on movement-related risk factors for ACL injury. Purpose: The aim of this study was to evaluate the effectiveness of a wearable neuromuscular device (WND) with or without the addition of a field-based, preventive neuromuscular training program on jump-landing risk assessment in young female soccer athletes. Methods: Thirty-nine female soccer players (161.0 +/- 6.6 cm; 49.4 kg +/- 5.9; 13.3 +/- 0.5 y) from two different teams in a local soccer club volunteered to participate in this study. Team 1 (n = 25) performed a 6-week, field-based NMT program while wearing a WND. The NMT was instructed by a trained exercise specialist. The NMT program was divided into three, two-week blocks of progressively increasing levels of exercise complexity and intensity focused on improving the strength and activation behavior of the trunk, hip and thigh muscles. Field-based movement testing was performed in the first week before training began (pre-test) and in the seventh week upon completion of the NMT program (post-test). During testing video cameras recorded a jump-landing task in the frontal and sagittal planes. The Landing Error Scoring System (LESS) and a novel version of the LESS (LESS-RMC) was used to asses movement quality related to ACL injury risk. Team 2 (n=14) wore the WND for an equal amount of athletic exposures over 7 weeks but did not perform the NMT program. Four different raters were recruited to visually score all jump landing trials using the two different rating protocols during the pre-test and post-test. For each visual assessment (LESS & LESS-RMC) a repeated measures ANOVA was conducted to explore within group (test) and between group (team) differences. Results: Repeated measure ANOVA results for the LESS score scale indicated a significant within factor difference in pretest and post test scores F(7.398, 27.533) = 8.598, P < 0.05. Pretest scores for team 1 (6.18 +/- 1.68) and team 2 (6.95 +/- 0.94) both saw a significant reduction in ACL risk scores to 5.44 +/- 1.70 and 6.31 +/- 1.75, respectively. ANOVA results for the LESS-RMC scale also indicated a significant within factor difference in pretest and posttests F(6.756, 35.624) = 6.069, p < 0.05. Pretest scores for Team 1 (6.02 +/- 1.99) and Team 2 (6.49 +/- 1.33) both saw a significant reduction in ACL risk scores to 5.10 +/- 1.77 and 6.09 +/- 1.50, respectively. ANOVA results revealed no significant differences between team scores for the LESS (F(0.031,27.533) = 0.036, p > 0.05) or LESS-RMC (F(1.053,35.624) = .946, p > 0.05) scales. Conclusion: The results reveal that the NMT program utilized in this study had no statistically significant additive effect on the visual risk assessment scores for Team 1 compared to Team 2, who had no NMT intervention and only wore the WND. Collectively, these results suggest that simply wearing a WND during 6 weeks of practice may be a less evasive and cheaper alternative to a NMT program.


2004 ◽  
Vol 36 (Supplement) ◽  
pp. S287 ◽  
Author(s):  
Timothy E. Hewett ◽  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Robert S. Heidt ◽  
Angelo J. Colosimo ◽  
...  

2016 ◽  
Vol 48 (1) ◽  
pp. 107-113 ◽  
Author(s):  
EVANGELOS PAPPAS ◽  
MARIYA P. SHIYKO ◽  
KEVIN R. FORD ◽  
GREGORY D. MYER ◽  
TIMOTHY E. HEWETT

2021 ◽  
Vol 67 (9) ◽  
pp. 34-46
Author(s):  
Bing-Bing Wu ◽  
Dong-Zhou Gu ◽  
Jia-Ning Yu ◽  
Li-Peng Feng ◽  
Rong Xu ◽  
...  

BACKGROUND: Smoking is a risk factor for many diseases. PURPOSE: This study explored the relationship between current or past smoking and pressure injury (PI) risk through a systematic review and meta-analysis. METHODS: The databases PubMed, Web of Science, and China National Knowledge Infrastructure were searched for the years between 2001 and 2020. Quality of evidence was estimated by the Newcastle-Ottawa Scale. The random effects model was applied to assess the odds ratios (OR) and 95% confidence intervals (CI); pooled adjusted OR and 95% CI, subgroup analysis, publication bias, sensitivity analyses, and meta-regression analysis were performed. RESULTS: Fifteen (15) studies (12 retrospective and 3 prospective) comprising data on 11 304 patients were eligible for inclusion in the review. The meta-analysis demonstrated that smoking increased the risk of PI (OR = 1.498; 95% CI, 1.058-2.122), and the pooled adjusted OR (1.969) and 95% CI (1.406-2.757) confirmed this finding. Publication bias was not detected by funnel plot, Begg’s test (P = .322), or Egger’s test (P = .666). Subgroup analyses yielded the same observations in both retrospective (OR = 1.607; 95% CI, 1.043-2.475) and prospective (OR = 1.218; 95% CI, 0.735-2.017) studies. The results were consistent across sensitivity analyses (OR = 1.07; 95% CI, 1.043-2.475). Relevant heterogeneity moderators were not identified by meta-regression analysis with PI incidence (P = .466), years of patient data included (P = .637), mean patient age (P = .650), and diabetes mellitus diagnosis (P = .509). CONCLUSION: This study found that individuals who are current or formers smokers have an almost 1.5 times higher risk of PI development than do those who do not smoke.


Sign in / Sign up

Export Citation Format

Share Document