scholarly journals 18 Methodology and reporting quality of studies using machine learning models for medical diagnosis: a methodological systematic review

Author(s):  
Mohamed Yusuf ◽  
Ignacio Atal ◽  
Jacques Li ◽  
Phil Smith ◽  
Philippe Ravaud ◽  
...  
Author(s):  
Nazanin Falconer ◽  
Ahmad Abdel‐Hafez ◽  
Ian A. Scott ◽  
Sven Marxen ◽  
Stephen Canaris ◽  
...  

Author(s):  
Nghia H Nguyen ◽  
Dominic Picetti ◽  
Parambir S Dulai ◽  
Vipul Jairath ◽  
William J Sandborn ◽  
...  

Abstract Background and Aims There is increasing interest in machine learning-based prediction models in inflammatory bowel diseases (IBD). We synthesized and critically appraised studies comparing machine learning vs. traditional statistical models, using routinely available clinical data for risk prediction in IBD. Methods Through a systematic review till January 1, 2021, we identified cohort studies that derived and/or validated machine learning models, based on routinely collected clinical data in patients with IBD, to predict the risk of harboring or developing adverse clinical outcomes, and reported its predictive performance against a traditional statistical model for the same outcome. We appraised the risk of bias in these studies using the Prediction model Risk of Bias ASsessment (PROBAST) tool. Results We included 13 studies on machine learning-based prediction models in IBD encompassing themes of predicting treatment response to biologics and thiopurines, predicting longitudinal disease activity and complications and outcomes in patients with acute severe ulcerative colitis. The most common machine learnings models used were tree-based algorithms, which are classification approaches achieved through supervised learning. Machine learning models outperformed traditional statistical models in risk prediction. However, most models were at high risk of bias, and only one was externally validated. Conclusions Machine learning-based prediction models based on routinely collected data generally perform better than traditional statistical models in risk prediction in IBD, though frequently have high risk of bias. Future studies examining these approaches are warranted, with special focus on external validation and clinical applicability.


Author(s):  
Noé Sturm ◽  
Jiangming Sun ◽  
Yves Vandriessche ◽  
Andreas Mayr ◽  
Günter Klambauer ◽  
...  

<div>This article describes an application of high-throughput fingerprints (HTSFP) built upon industrial data accumulated over the years. </div><div>The fingerprint was used to build machine learning models (multi-task deep learning + SVM) for compound activity predictions towards a panel of 131 targets. </div><div>Quality of the predictions and the scaffold hopping potential of the HTSFP were systematically compared to traditional structural descriptors ECFP. </div><div><br></div>


Author(s):  
Jože M. Rožanec ◽  
Elena Trajkova ◽  
Jinzhi Lu ◽  
Nikolaos Sarantinoudis ◽  
Georgios Arampatzis ◽  
...  

Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire refinery. In this context, implementation of a real-time cognitive module, referring to predictive machine learning models, enables to provide equipment state monitoring services and to generate decision-making for equipment operations. In this paper, we propose two machine learning models: 1) to forecast the amount of pentane (C5) content in the final product mixture; 2) to identify if C5 content exceeds the specification thresholds for the final product quality. We validate our approach by using a use case from a real-world refinery. In addition, we develop a visualization to assess which features are considered most important during feature selection, and later by the machine learning models. Finally, we provide insights on the sensor values in the dataset, which help to identify the operational conditions for using such machine learning models.


iScience ◽  
2021 ◽  
pp. 103651
Author(s):  
Hong-Fei Deng ◽  
Ming-Wei Sun ◽  
Yu Wang ◽  
Jun Zeng ◽  
Ting Yuan ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11790
Author(s):  
Jože Martin Rožanec ◽  
Elena Trajkova ◽  
Jinzhi Lu ◽  
Nikolaos Sarantinoudis ◽  
George Arampatzis ◽  
...  

Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire refinery. In this context, implementation of a real-time cognitive module, referring to predictive machine learning models, enables the provision of equipment state monitoring services and the generation of decision-making for equipment operations. In this paper, we propose two machine learning models: (1) to forecast the amount of pentane (C5) content in the final product mixture; (2) to identify if C5 content exceeds the specification thresholds for the final product quality. We validate our approach using a use case from a real-world refinery. In addition, we develop a visualization to assess which features are considered most important during feature selection, and later by the machine learning models. Finally, we provide insights on the sensor values in the dataset, which help to identify the operational conditions for using such machine learning models.


2018 ◽  
Vol 12 (1) ◽  
pp. 810-823 ◽  
Author(s):  
Mohamad Javad Alizadeh ◽  
Mohamad Reza Kavianpour ◽  
Malihe Danesh ◽  
Jason Adolf ◽  
Shahabbodin Shamshirband ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document