scholarly journals Extinction during time controlled direct retinal stimulation after recovery from right hemispheric stroke.

1995 ◽  
Vol 59 (5) ◽  
pp. 534-536 ◽  
Author(s):  
R F Kaplan ◽  
R A Cohen ◽  
A Rosengart ◽  
A E Elsner ◽  
T R Hedges ◽  
...  
2015 ◽  
Vol 8 (2) ◽  
pp. 2106-2121
Author(s):  
Hamed Ibrahem Abdelkader ◽  
Mona Abdelkader ◽  
Mohammed Kabeel ◽  
Malak Alya

Visual evoked potentials (VEPS) are obtained from optic tract by recording the evoked potentials generated by retinal stimulation. The flash VEP (FVEP) is used less frequently than pattern reversal VEP (PRVEP) because; it shows great variation in both latency and amplitude. The present study was undertaken to evaluate the effect of change of wavelength of flash and change of check size on the parameters of visual evoked potential (amplitude and latency) in normal individuals and glaucoma patients. The group of healthy subjects in the age of 20-45 years while the group of glaucoma subjects where  in the age of 25-50 years.  The two groups were exposed to flash VEP with white light and blue color and they also were exposed to checks subtending a visual angles of 15, 30,60 and 120 minutes of arc. The measured data were statistically analyzed and summarized by histograms. The interindividual and intraindividual in latencies and amplitudes for FVEP were assessed using  the coefficient of variation (COV). In conclusion, monochromatic flash VEP was preferred than white as there were minimal inter and intra individual variation of latencies and amplitudes. The most preferred check size in PRVEP was 120' for  the two groups.  


Author(s):  
Richard Farb ◽  
David Pelz ◽  
Philippe Huot ◽  
François Émond
Keyword(s):  

2007 ◽  
Vol 98 (4) ◽  
pp. 2089-2098 ◽  
Author(s):  
Sean P. MacEvoy ◽  
Russell A. Epstein

Complex visual scenes preferentially activate several areas of the human brain, including the parahippocampal place area (PPA), the retrosplenial complex (RSC), and the transverse occipital sulcus (TOS). The sensitivity of neurons in these regions to the retinal position of stimuli is unknown, but could provide insight into their roles in scene perception and navigation. To address this issue, we used functional magnetic resonance imaging (fMRI) to measure neural responses evoked by sequences of scenes and objects confined to either the left or right visual hemifields. We also measured the level of adaptation produced when stimuli were either presented first in one hemifield and then repeated in the opposite hemifield or repeated in the same hemifield. Although overall responses in the PPA, RSC, and TOS tended to be higher for contralateral stimuli than for ipsilateral stimuli, all three regions exhibited position-invariant adaptation, insofar as the magnitude of adaptation did not depend on whether stimuli were repeated in the same or opposite hemifields. In contrast, object-selective regions showed significantly greater adaptation when objects were repeated in the same hemifield. These results suggest that neuronal receptive fields (RFs) in scene-selective regions span the vertical meridian, whereas RFs in object-selective regions do not. The PPA, RSC, and TOS may support scene perception and navigation by maintaining stable representations of large-scale features of the visual environment that are insensitive to the shifts in retinal stimulation that occur frequently during natural vision.


2015 ◽  
Vol 45 (4-5) ◽  
pp. 327-333 ◽  
Author(s):  
S. Tasseel-Ponche ◽  
A.P. Yelnik ◽  
I.V. Bonan

2018 ◽  
Vol 243 (17-18) ◽  
pp. 1256-1264 ◽  
Author(s):  
Xincheng Yao ◽  
Taeyoon Son ◽  
Tae-Hoon Kim ◽  
Yiming Lu

Age-related macular degeneration (AMD) is the leading cause of severe vision loss and legal blindness. It is known that retinal photoreceptors are the primary target of AMD. Therefore, a reliable method for objective assessment of photoreceptor function is needed for early detection and reliable treatment evaluation of AMD and other eye diseases such as retinitis pigmentosa that are known to cause photoreceptor dysfunctions. Stimulus-evoked intrinsic optical signal (IOS) changes promise a unique opportunity for objective assessment of physiological function of retinal photoreceptor and inner neurons. Instead of a comprehensive review, this mini-review is to provide a brief summary of our recent in vitro and in vivo optical coherence tomography (OCT) studies of stimulus-evoked IOS changes in animal retinas. By providing excellent axial resolution to differentiate individual retinal layers, depth-resolved OCT revealed rapid IOS response at the photoreceptor outer segment. The fast photoreceptor-IOS occurred almost right away (∼ 2 ms) after the onset of retinal stimulation, differentiating itself from slow IOS changes correlated with inner neural and hemodynamic changes. Further development of the functional IOS instruments and retinal stimulation protocols may provide a feasible solution to pursue clinical application of functional IOS imaging for objective assessment of human photoreceptors. Impact statement Retinal photoreceptors are the primary target of age-related macular degeneration (AMD) which is the leading cause of severe vision loss and legal blindness. An objective method for functional assessment of photoreceptor physiology can benefit early detection and better treatment evaluation of AMD and other eye diseases that are known to cause photoreceptor dysfunctions. This article summarizes in vitro study of IOS mechanisms and in vivo demonstration of IOS imaging of intact animals. Further development of the functional IOS imaging may provide a revolutionary solution to achieve objective assessment of human photoreceptors.


Sign in / Sign up

Export Citation Format

Share Document