scholarly journals Paramedic utilization of Vision, Aphasia, Neglect (VAN) stroke severity scale in the prehospital setting predicts emergent large vessel occlusion stroke

2020 ◽  
pp. neurintsurg-2020-016054 ◽  
Author(s):  
Lee Birnbaum ◽  
David Wampler ◽  
Arash Shadman ◽  
Mateja de Leonni Stanonik ◽  
Michele Patterson ◽  
...  

BackgroundNumerous stroke severity scales have been published, but few have been studied with emergency medical services (EMS) in the prehospital setting. We studied the Vision, Aphasia, Neglect (VAN) stroke assessment scale in the prehospital setting for its simplicity to both teach and perform. This prospective prehospital cohort study was designed to validate the use and efficacy of VAN within our stroke systems of care, which includes multiple comprehensive stroke centers (CSCs) and EMS agencies.MethodsThe performances of VAN and the National Institutes of Health Stroke Scale (NIHSS) ≥6 for the presence of both emergent large vessel occlusion (ELVO) alone and ELVO or any intracranial hemorrhage (ICH) combined were reported with positive predictive value, sensitivity, negative predictive value, specificity, and overall accuracy. For subjects with intraparenchymal hemorrhage, volume was calculated based on the ABC/2 formula and the presence of intraventricular hemorrhage was recorded.ResultsBoth VAN and NIHSS ≥6 were significantly associated with ELVO alone and with ELVO or any ICH combined using χ2 analysis. Overall, hospital NIHSS ≥6 performed better than prehospital VAN based on statistical measures. Of the 34 cases of intraparenchymal hemorrhage, mean±SD hemorrhage volumes were 2.5±4.0 mL for the five VAN-negative cases and 17.5±14.2 mL for the 29 VAN-positive cases.ConclusionsOur VAN study adds to the published evidence that prehospital EMS scales can be effectively taught and implemented in stroke systems with multiple EMS agencies and CSCs. In addition to ELVO, prehospital scales such as VAN may also serve as an effective ICH bypass tool.

Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Alexander Venizelos ◽  
Sherman Chen ◽  
Ryan Gianatasio ◽  
Stewart Coffman ◽  
Mark Gamber ◽  
...  

Introduction: A pre-hospital stroke severity scale that correlates well with an NIHSS of 10 or greater as well as with large vessel occlusions, but is easier and faster to perform than full NIHSS, would be a very useful triaging tool to emergency medical services (EMS). The LEGS score (Lower extremity strength, Eyes/visual fields, Gaze deviation, Speech difficulty) is a 16-point pre-hospital stroke severity scale that is a shortened NIHSS-5. Hypothesis: We assessed the hypothesis that the LEGS score was a useful pre-hospital stroke severity scoring system to identify large vessel acute ischemic strokes. Methods: The LEGS score (0-16) and NIHSS (0-42) were performed in the emergency department over a 6-month period. We retrospectively reviewed those charts for correlation to an NIHSS of 10 or greater and evidence of large-vessel occlusion on either CT or MR Angiography within 48 hours of last known normal. Results: A total of 181 consecutive ischemic stroke patients were evaluated. LEGS score 4 or greater was a good predictor of an NIHSS of 10 or greater (59/181; positive predictive value 92%; and specificity 95%) and false positives noted was 5/181. LEGS score of less than 4 was a good predictor of an NIHSS of less than 10 (108/181; negative predictive value 91%; and sensitivity 95%) and false negatives noted was 10/181. Of those patients 155 underwent intracranial vascular imaging. LEGS score of less than 4 was a good test to rule-out large vessel occlusion (negative predictive value of 86%; 89/103), but had modest sensitivity (69%; 31/45) and positive predictive value (60%; 31/52). The LEGS score of 4 or greater, however, was fairly specific for determining large-vessel occlusions at 81% (89/110). Conclusions: LEGS score of 4 or greater has good correlation with an NIHSS of 10 or greater as well as modest correlation with large vessel occlusion on CT or MR Angiography. This shortened NIHSS-5 may be a useful pre-hospital indicator of patients who may benefit from endovascular intervention.


Author(s):  
Lauren Patrick ◽  
Wade Smith ◽  
Kevin J. Keenan

Abstract Purpose of Review Endovascular therapy for acute ischemic stroke secondary to large vessel occlusion (LVO) is time-dependent. Prehospital patients with suspected LVO stroke should be triaged directly to specialized stroke centers for endovascular therapy. This review describes advances in LVO detection among prehospital suspected stroke patients. Recent Findings Clinical prehospital stroke severity tools have been validated in the prehospital setting. Devices including EEG, SSEPs, TCD, cranial accelerometry, and volumetric impedance phase-shift-spectroscopy have recently published data regarding LVO detection in hospital settings. Mobile stroke units bring thrombolysis and vessel imaging to patients. Summary The use of a prehospital stroke severity tool for LVO triage is now widely supported. Ease of use should be prioritized as there are no meaningful differences in diagnostic performance amongst tools. LVO diagnostic devices are promising, but none have been validated in the prehospital setting. Mobile stroke units improve patient outcomes and cost-effectiveness analyses are underway.


2019 ◽  
Author(s):  
Xiaoli Si ◽  
Yuanjian Fang ◽  
Wenqing Xia ◽  
Tianwen Chen ◽  
Huan Huang ◽  
...  

Abstract Background and Purpose - To date, identifying emergent large vessel occlusion (ELVO) patients in the prehospital stage is important but still challenging. We aimed to retrospectively validate a simple prehospital stroke scale——Prehospital Acute Stroke Severity (PASS) scale to identify ELVO. Methods - We retrospectively evaluated our consecutive cohort of acute ischemic stroke (AIS) who underwent CT angiography (CTA), MR angiography (MRA) or digital subtraction angiography (DSA). PASS scale was calculated based on National Institutes of Health Stroke Scale (NIHSS) items retrospectively. The comparison of diagnostic parameters between PASS scale and NIHSS scale were performed. Results - Finally, a total of 605 patients were enrolled. ELVO patients with PASS≥2 had a median NIHSS score of 14. The best predictive value of PASS≥2 showed a similar predictive value compared with NIHSS≥9. Cortical symptoms such as consciousness disorder and gaze palsy were more specific indicators for ELVO than motor deficits. Consciousness disorder was more serious in posterior circulation infarct (PIC) while gaze palsy was more common in anterior circulation infarct (AIC). Conclusions - PASS scale had both good discrimination and calibration in our retrospective cohort. It could reflect acute stroke severity well and predict ELVO in an effective and simple way. Moreover, cortical symptoms had high specificities to predict ELVO on their own.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Adeline R Dozois ◽  
Lorrie Hampton ◽  
Carlene W Kingston ◽  
Gwen Lambert ◽  
Thomas J Porcelli ◽  
...  

Introduction: Regional Emergency Medical System (EMS) protocols for acute stroke endorse routing patients with possible large vessel occlusion (LVO) acute ischemic strokes (AIS) directly to endovascular centers. These routing algorithms include prehospital stroke severity screens (PSSS) to determine the likelihood of an LVO AIS. An essential, but unreported, determinant of the predictive value of PSSS tools is the prevalence of LVO AIS stroke in the EMS population screened for stroke. Hypothesis: Among EMS patients transported to Mecklenburg county hospitals screened for stroke, acute LVO AIS prevalence ranges from 5-10%. Methods: We are conducting a prospective, observational study of all patients transported by the Mecklenburg county EMS agency who are either (1) dispatched as a possible stroke and/or (2) with a primary impression of stroke recorded by prehospital providers. We are reviewing medical records and neurovascular imaging studies to determine an acute LVO AIS diagnosis and the site(s) of occlusion. Results: Thus far, over a six-month period we have enrolled 1441 patients, of whom 33% (n=480) had a diagnosis consistent with acute stroke (ischemic stroke, hemorrhagic stroke, or transient ischemic attack), with 20% (n=287) being an AIS. Eighty-eight percent (n=253) of AIS patients underwent an intracranial CTA or MRA. The prevalence of LVO stroke in the EMS population enrolled was 5.7% (n= 82, 95% CI 4.6-7.0%), with the most common vessel occluded being M1 (n=46, 56% of LVO AIS). The prevalence of LVO AIS in patients dispatched as a possible stroke was 4.8% (n =56; 95% CI 3.6-6.1%), while the prevalence in patients with a primary impression of stroke was 10% (n=74; 95% CI 8.2-13%). Conclusions: Among patients screened for stroke by our county’s EMS agency, the prevalence of LVO AIS is low. This low LVO AIS prevalence, combined with a PSSS tool with modest accuracy, will yield poor predictive value for LVO AIS in an EMS population, resulting in a substantial rate of over-triage of non-LVO patients to endovascular centers. Data collection is ongoing to determine the accuracy of a prehospital stroke screen in identifying LVO AIS patients.


2021 ◽  
pp. neurintsurg-2020-017155
Author(s):  
Alexander M Kollikowski ◽  
Franziska Cattus ◽  
Julia Haag ◽  
Jörn Feick ◽  
Alexander G März ◽  
...  

BackgroundEvidence of the consequences of different prehospital pathways before mechanical thrombectomy (MT) in large vessel occlusion stroke is inconclusive. The aim of this study was to investigate the infarct extent and progression before and after MT in directly admitted (mothership) versus transferred (drip and ship) patients using the Alberta Stroke Program Early CT Score (ASPECTS).MethodsASPECTS of 535 consecutive large vessel occlusion stroke patients eligible for MT between 2015 to 2019 were retrospectively analyzed for differences in the extent of baseline, post-referral, and post-recanalization infarction between the mothership and drip and ship pathways. Time intervals and transport distances of both pathways were analyzed. Multiple linear regression was used to examine the association between infarct progression (baseline to post-recanalization ASPECTS decline), patient characteristics, and logistic key figures.ResultsASPECTS declined during transfer (9 (8–10) vs 7 (6-9), p<0.0001), resulting in lower ASPECTS at stroke center presentation (mothership 9 (7–10) vs drip and ship 7 (6–9), p<0.0001) and on follow-up imaging (mothership 7 (4–8) vs drip and ship 6 (3–7), p=0.001) compared with mothership patients. Infarct progression was significantly higher in transferred patients (points lost, mothership 2 (0–3) vs drip and ship 3 (2–6), p<0.0001). After multivariable adjustment, only interfacility transfer, preinterventional clinical stroke severity, the degree of angiographic recanalization, and the duration of the thrombectomy procedure remained predictors of infarct progression (R2=0.209, p<0.0001).ConclusionsInfarct progression and postinterventional infarct extent, as assessed by ASPECTS, varied between the drip and ship and mothership pathway, leading to more pronounced infarction in transferred patients. ASPECTS may serve as a radiological measure to monitor the benefit or harm of different prehospital pathways for MT.


Stroke ◽  
2021 ◽  
Author(s):  
Laura C.C. van Meenen ◽  
Maritta N. van Stigt ◽  
Arjen Siegers ◽  
Martin D. Smeekes ◽  
Joffry A.F. van Grondelle ◽  
...  

A reliable and fast instrument for prehospital detection of large vessel occlusion (LVO) stroke would be a game-changer in stroke care, because it would enable direct transportation of LVO stroke patients to the nearest comprehensive stroke center for endovascular treatment. This strategy would substantially improve treatment times and thus clinical outcomes of patients. Here, we outline our view on the requirements of an effective prehospital LVO detection method, namely: high diagnostic accuracy; fast application and interpretation; user-friendliness; compactness; and low costs. We argue that existing methods for prehospital LVO detection, including clinical scales, mobile stroke units and transcranial Doppler, do not fulfill all criteria, hindering broad implementation of these methods. Instead, electroencephalography may be suitable for prehospital LVO detection since in-hospital studies have shown that quantification of hypoxia-induced changes in the electroencephalography signal have good diagnostic accuracy for LVO stroke. Although performing electroencephalography measurements in the prehospital setting comes with challenges, solutions for fast and simple application of this method are available. Currently, the feasibility and diagnostic accuracy of electroencephalography in the prehospital setting are being investigated in clinical trials.


Stroke ◽  
2021 ◽  
Author(s):  
Raul G. Nogueira ◽  
Jason M. Davies ◽  
Rishi Gupta ◽  
Ameer E. Hassan ◽  
Thomas Devlin ◽  
...  

Background and Purpose: The degree to which the coronavirus disease 2019 (COVID-19) pandemic has affected systems of care, in particular, those for time-sensitive conditions such as stroke, remains poorly quantified. We sought to evaluate the impact of COVID-19 in the overall screening for acute stroke utilizing a commercial clinical artificial intelligence platform. Methods: Data were derived from the Viz Platform, an artificial intelligence application designed to optimize the workflow of patients with acute stroke. Neuroimaging data on suspected patients with stroke across 97 hospitals in 20 US states were collected in real time and retrospectively analyzed with the number of patients undergoing imaging screening serving as a surrogate for the amount of stroke care. The main outcome measures were the number of computed tomography (CT) angiography, CT perfusion, large vessel occlusions (defined according to the automated software detection), and severe strokes on CT perfusion (defined as those with hypoperfusion volumes >70 mL) normalized as number of patients per day per hospital. Data from the prepandemic (November 4, 2019 to February 29, 2020) and pandemic (March 1 to May 10, 2020) periods were compared at national and state levels. Correlations were made between the inter-period changes in imaging screening, stroke hospitalizations, and thrombectomy procedures using state-specific sampling. Results: A total of 23 223 patients were included. The incidence of large vessel occlusion on CT angiography and severe strokes on CT perfusion were 11.2% (n=2602) and 14.7% (n=1229/8328), respectively. There were significant declines in the overall number of CT angiographies (−22.8%; 1.39–1.07 patients/day per hospital, P <0.001) and CT perfusion (−26.1%; 0.50–0.37 patients/day per hospital, P <0.001) as well as in the incidence of large vessel occlusion (−17.1%; 0.15–0.13 patients/day per hospital, P <0.001) and severe strokes on CT perfusion (−16.7%; 0.12–0.10 patients/day per hospital, P <0.005). The sampled cohort showed similar declines in the rates of large vessel occlusions versus thrombectomy (18.8% versus 19.5%, P =0.9) and comprehensive stroke center hospitalizations (18.8% versus 11.0%, P =0.4). Conclusions: A significant decline in stroke imaging screening has occurred during the COVID-19 pandemic. This analysis underscores the broader application of artificial intelligence neuroimaging platforms for the real-time monitoring of stroke systems of care.


2018 ◽  
Vol 7 (3-4) ◽  
pp. 196-203 ◽  
Author(s):  
Kessarin Panichpisal ◽  
Kenneth Nugent ◽  
Maharaj Singh ◽  
Richard Rovin ◽  
Reji Babygirija ◽  
...  

Background: Early identification of patients with acute ischemic strokes due to large vessel occlusions (LVO) is critical. We propose a simple risk score model to predict LVO. Method: The proposed scale (Pomona Scale) ranges from 0 to 3 and includes 3 items: gaze deviation, expressive aphasia, and neglect. We reviewed a cohort of all acute stroke activation patients between February 2014 and January 2016. The predictive performance of the Pomona Scale was determined and compared with several National Institutes of Health Stroke Scale (NIHSS) cutoffs (≥4, ≥6, ≥8, and ≥10), the Los Angeles Motor Scale (LAMS), the Cincinnati Prehospital Stroke Severity (CPSS) scale, the Vision Aphasia and Neglect Scale (VAN), and the Prehospital Acute Stroke Severity Scale (PASS). Results: LVO was detected in 94 of 776 acute stroke activations (12%). A Pomona Scale ≥2 had comparable accuracy to predict LVO as the VAN and CPSS scales and higher accuracy than Pomona Scale ≥1, LAMS, PASS, and NIHSS. A Pomona Scale ≥2 had an accuracy (area under the curve) of 0.79, a sensitivity of 0.86, a specificity of 0.70, a positive predictive value of 0.71, and a negative predictive value of 0.97 for the detection of LVO. We also found that the presence of either neglect or gaze deviation alone had comparable accuracy of 0.79 as Pomona Scale ≥2 to detect LVO. Conclusion: The Pomona Scale is a simple and accurate scale to predict LVO. In addition, the presence of either gaze deviation or neglect also suggests the possibility of LVO.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Sana Somani ◽  
Melissa Gazi ◽  
Michael Minor ◽  
Joe Acker ◽  
Abimbola Fadairo ◽  
...  

Introduction: The Emergency Medical Stroke Assessment (EMSA) is a six point stroke severity scale with one point each for gaze preference, facial droop, arm drift, leg drift, abnormal naming, and abnormal repetition that was developed to help emergency medical services (EMS) providers identify acute ischemic stroke (AIS) patients with large vessel occlusion (LVO). We hypothesized that the EMSA would detect left hemisphere LVO with a higher sensitivity than right hemisphere LVO. Methods: We trained 24 trauma system-based emergency communication center (ECC) paramedics in the EMSA. ECC-guided EMS in performance of the EMSA on patients with suspected stroke. We compared the sensitivity, specificity, area under the curve (AUC), and 95% confidence interval (CI) of ECC-guided prehospital EMSA for right versus left hemisphere ICA or M1 occlusion. Results: We enrolled 569 patients from September 2016 through February 2018, out of which 236 had a discharge diagnosis of stroke and 173 had a diagnosis of AIS. We excluded patients with bilateral (n=21) and brainstem (n=21) AIS. There were 64 patients with left hemisphere AIS including 19 with LVO. There were 67 patients with right hemisphere AIS including 22 with LVO. A score of ≥ 4 points yielded a sensitivity of 84.2 (95% CI = 60.4-96.6) and specificity of 66.7 (51.1-80.0) for left hemisphere LVO compared to a sensitivity of 68.2 (45.1-86.1) and specificity of 73.9 (58.9-85.7) for right hemisphere LVO. For predicting a left hemisphere LVO, the AUC was 0.77 (0.65-0.90) compared to 0.66 (0.50-0.82) for right-sided LVO. Assigning 2 points for abnormal gaze yielded an AUC of 0.78 (0.66-0.91) versus 0.67 (0.52-0.83) for left and right hemisphere LVO, respectively. Conclusions: The EMSA, like the National Institutes of Health Stroke Scale (NIHSS) upon which it is based, is more sensitive to left compared to right hemisphere LVO. More heavily weighting abnormal gaze did not improve the sensitivity of the EMSA for right hemisphere LVO. There is no comparable data on the right versus left hemisphere performance of other prehospital scales. There is a need to develop sensitive tests of right hemisphere dysfunction that are suitable for use in the field.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Esteban Cheng-Ching ◽  
Russell Cerejo ◽  
Ken Uchino ◽  
Muhammad S Hussain ◽  
Gabor Toth

Background and purpose Large vessel occlusion (LVO) in acute ischemic stroke has been reported to be an independent predictor of unfavorable clinical outcome. However, the prognosis and optimal treatment of patients with only mild neurologic deficits due to LVO are not known. Methods We performed a retrospective chart review from a database of stroke patients admitted to our large academic medical center between July 1, 2010 and June 30 , 2011. Inclusion criteria were acute stroke or TIA, presentation within 9 hours from symptom onset, large vessel occlusion as a culprit of ischemic symptoms, and mild stroke severity with initial NIH Stroke Scale (NIHSS) score <8. Results We identified 59 patients with mild ischemic stroke or TIA, who were evaluated within 9 hours from onset. Of these, 13 (22%) had culprit large vessel occlusions. Five were female, 1 had diabetes, 12 had hypertension, 7 had hyperlipidemia, 2 had atrial fibrillation and 7 were smokers. The median NIHSS score was 5. The location of arterial occlusions were 5 in M1 segment of the middle cerebral artery (MCA), 6 in M2 segment of MCA, 1 each in posterior cerebral and vertebral arteries. Two patients received acute therapy, 1 with intravenous thrombolysis and 1 with endovascular therapy. Reasons for withholding thrombolytic therapy were time window in 8, mild stroke severity in 2, and atypical presentations in 2. Reasons for withholding acute endovascular therapy were mild stroke severity in 7, imaging finding in 2, technical considerations in 2, and lack of consent in 1. From hospital admission to discharge, 10 (77%) patients had symptom improvement, 2 had worsening, and one was unchanged. At 30 days, 5 (38%) had good outcome with a modified Rankin Scale (mRS) of 0-1. Three (23%) had mRS of 2, one (8%) patient had mRS of 3. Outcomes for 4 patients were unknown. Conclusions A significant proportion of patients presenting with mild ischemic symptoms has large vessel occlusion. Acute treatment in this population is frequently withheld due to mild severity or thrombolytic time window. Despite mild symptoms at presentation, some patients are left with moderate disability. Optimal treatment options for this population should be further evaluated in a larger group of patients.


Sign in / Sign up

Export Citation Format

Share Document