scholarly journals Prevalence of cardiac pathology and relation to mortality in a multiethnic population hospitalised with COVID-19

Open Heart ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. e001833
Author(s):  
Gabriel Bioh ◽  
Christina Botrous ◽  
Emma Howard ◽  
Ashish Patel ◽  
Reinette Hampson ◽  
...  

ObjectiveTo determine the prevalence of cardiac abnormalities and their relationship to markers of myocardial injury and mortality in patients admitted to hospital with COVID-19.MethodsA retrospective and prospective observational study of inpatients referred for transthoracic echocardiography for suspected cardiac pathology due to COVID-19 within a London NHS Trust. Echocardiograms were performed to assess left ventricular (LV), right ventricular (RV) and pulmonary variables along with collection of patient demographics, comorbid conditions, blood biomarkers and outcomes.ResultIn the predominant non-white (72%) population, RV dysfunction was the primary cardiac abnormality noted in 50% of patients, with RV fractional area change <35% being the most common marker of this RV dysfunction. By comparison, LV systolic dysfunction occurred in 18% of patients. RV dysfunction was associated with LV systolic dysfunction and the presence of a D-shaped LV throughout the cardiac cycle (marker of significant pulmonary artery hypertension). LV systolic dysfunction (p=0.002, HR 3.82, 95% CI 1.624 to 8.982), pulmonary valve acceleration time (p=0.024, HR 0.98, 95% CI 0.964 to 0.997)—marker of increased pulmonary vascular resistance, age (p=0.047, HR 1.027, 95% CI 1.000 to 1.055) and an episode of tachycardia measured from admission to time of echo (p=0.004, HR 6.183, 95% CI 1.772 to 21.575) were independently associated with mortality.ConclusionsIn this predominantly non-white population hospitalised with COVID-19, the most common cardiac pathology was RV dysfunction which is associated with both LV systolic dysfunction and elevated pulmonary artery pressure. The latter two, not RV dysfunction, were associated with mortality.

2012 ◽  
Vol 18 (10) ◽  
pp. S131
Author(s):  
Kaoru Dohi ◽  
Kazuhide Ichikawa ◽  
Emiyo Sugiura ◽  
Takeshi Takamura ◽  
Katsuya Onishi ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
pp. 204589321774450 ◽  
Author(s):  
Junjie Zhang ◽  
Yanan Cao ◽  
Xiaowei Gao ◽  
Maoen Zhu ◽  
Zhong Zhang ◽  
...  

Worsening right ventricular (RV) dysfunction in the presence of pulmonary artery hypertension (PAH) increases morbidity and mortality in this patient population. Transthoracic echocardiography (TTE) is a non-invasive modality to evaluate RV function over time. Using a monocrotaline-induced PAH rat model, we evaluated the effect of acute inflammation on RV function. In this study, both PAH and control rats were injected with Escherichia coli lipopolysaccharide (LPS) to induce an acute inflammatory state. We evaluated survival curves, TTE parameters, and inflammatory markers to better understand the mechanism and impact of acute inflammation on RV function in the presence of PAH. The survival curve of the PAH rats dropped sharply within 9 h after LPS treatment. Several echocardiographic parameters including left ventricular (LV) stroke volume, RV tricuspid annular plane systolic excursion, RV longitudinal peak systolic strain, and strain rate decreased significantly in PAH rats before LPS injection and 2 h after LPS injection. The expression of phospholamban (PLB) and tumor necrosis factor-α (TNF-α) significantly increased and the expression of SERCA2a significantly decreased in PAH rats after LPS administration. LPS suppressed the RV longitudinal peak systolic strain and strain rate and cardiac function deteriorated in PAH rats. These effects may be associated with the signal pathway activity of SERCA2a/PLB.


Author(s):  
Romain Barthélémy ◽  
Etienne Gayat ◽  
Alexandre Mebazaa

Haemodynamic instability in acute cardiac care may be related to various mechanisms, including hypovolaemia and heart and/or vascular dysfunction. Although acute heart failure patients are often admitted for dyspnoea, many mechanisms can be involved, including left ventricular diastolic and/or systolic dysfunction and/or right ventricular dysfunction. Many epidemiological studies show that clinical signs at admission, morbidity, and mortality differ between the main scenarios of acute heart failure: left ventricular diastolic dysfunction, left ventricular systolic dysfunction, right ventricular dysfunction, and cardiogenic shock. Although echocardiography often helps to assess the mechanism of cardiac dysfunction, it cannot be considered as a monitoring tool. In some cases (in particular, in cases of refractory shock secondary to both vascular and heart dysfunction or in cases of refractory haemodynamic instability associated with severe hypoxaemia), pulmonary artery catheter can help to assess and monitor cardiovascular status and to evaluate response to treatments. Last, macro- and microvascular dysfunctions are also important determinants of haemodynamic instability.


Sign in / Sign up

Export Citation Format

Share Document