Order Preserving Maps and Linear Extensions of a Finite Poset

1985 ◽  
Vol 6 (4) ◽  
pp. 738-748 ◽  
Author(s):  
David E. Daykin ◽  
Jacqueline W. Daykin

10.37236/75 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Richard P. Stanley

Promotion and evacuation are bijections on the set of linear extensions of a finite poset first defined by Schützenberger. This paper surveys the basic properties of these two operations and discusses some generalizations. Linear extensions of a finite poset $P$ may be regarded as maximal chains in the lattice $J(P)$ of order ideals of $P$. The generalizations concern permutations of the maximal chains of a wider class of posets, or more generally bijective linear transformations on the vector space with basis consisting of the maximal chains of any poset. When the poset is the lattice of subspaces of ${\Bbb F}_q^n$, then the results can be stated in terms of the expansion of certain Hecke algebra products.



10.37236/6898 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Sen-Peng Eu ◽  
Tung-Shan Fu ◽  
Hsiang-Chun Hsu ◽  
Yu-Pei Huang

For a partition $\lambda$ of an integer, we associate $\lambda$ with a slender poset $P$ the Hasse diagram of which resembles the Ferrers diagram of $\lambda$. Let $X$ be the set of maximal chains of $P$. We consider Stanley's involution $\epsilon:X\rightarrow X$, which is extended from Schützenberger's evacuation on linear extensions of a finite poset. We present an explicit characterization of the fixed points of the map $\epsilon:X\rightarrow X$ when $\lambda$ is a stretched staircase or a rectangular shape. Unexpectedly, the fixed points have a nice structure, i.e., a fixed point can be decomposed in half into two chains such that the first half and the second half are the evacuation of each other. As a consequence, we prove anew Stembridge's $q=-1$ phenomenon for the maximal chains of $P$ under the involution $\epsilon$ for the restricted shapes.



10.37236/7337 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Evan Chen

Given a finite poset $\mathcal P$ and two distinct elements $x$ and $y$, we let $\operatorname{pr}_{\mathcal P}(x \prec y)$ denote the fraction of linear extensions of $\mathcal P$ in which $x$ precedes $y$. The balance constant $\delta(\mathcal P)$ of $\mathcal P$ is then defined by \[ \delta(\mathcal P) = \max_{x \neq y \in \mathcal P} \min \left\{ \operatorname{pr}_{\mathcal P}(x \prec y), \operatorname{pr}_{\mathcal P}(y \prec x) \right\}. \] The $1/3$-$2/3$ conjecture asserts that $\delta(\mathcal P) \ge \frac13$ whenever $\mathcal P$ is not a chain, but except from certain trivial examples it is not known when equality occurs, or even if balance constants can approach $1/3$.In this paper we make some progress on the conjecture by exhibiting a sequence of posets with balance constants approaching $\frac{1}{32}(93-\sqrt{6697}) \approx 0.3488999$, answering a question of Brightwell. These provide smaller balance constants than any other known nontrivial family.



10.37236/6463 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Ben P. Zhou

Given a finite poset $P$, we associate a simple graph denoted by $G_P$ with all connected order ideals of $P$ as vertices, and two vertices are adjacent if and only if they have nonempty intersection and are incomparable with respect to set inclusion. We establish a bijection between the set of maximum independent sets of $G_P$ and the set of $P$-forests, introduced by Feray and Reiner in their study of the fundamental generating function $F_P(\textbf{x})$ associated with $P$-partitions. Based on this bijection, in the cases when $P$ is naturally labeled we show that $F_P(\textbf{x})$ can factorise, such that each factor is a summation of rational functions determined by maximum independent sets of a connected component of $G_P$. This approach enables us to give an alternative proof for Feray and Reiner's nice formula of $F_P(\textbf{x})$ for the case of $P$ being a naturally labeled forest with duplications. Another consequence of our result is a product formula to compute the number of linear extensions of $P$.







Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 143
Author(s):  
Jose Beltrán Jiménez ◽  
Tomi S. Koivisto

In this paper, we provide a general framework for the construction of the Einstein frame within non-linear extensions of the teleparallel equivalents of General Relativity. These include the metric teleparallel and the symmetric teleparallel, but also the general teleparallel theories. We write the actions in a form where we separate the Einstein–Hilbert term, the conformal mode due to the non-linear nature of the theories (which is analogous to the extra degree of freedom in f(R) theories), and the sector that manifestly shows the dynamics arising from the breaking of local symmetries. This frame is then used to study the theories around the Minkowski background, and we show how all the non-linear extensions share the same quadratic action around Minkowski. As a matter of fact, we find that the gauge symmetries that are lost by going to the non-linear generalisations of the teleparallel General Relativity equivalents arise as accidental symmetries in the linear theory around Minkowski. Remarkably, we also find that the conformal mode can be absorbed into a Weyl rescaling of the metric at this order and, consequently, it disappears from the linear spectrum so only the usual massless spin 2 perturbation propagates. These findings unify in a common framework the known fact that no additional modes propagate on Minkowski backgrounds, and we can trace it back to the existence of accidental gauge symmetries of such a background.



1970 ◽  
Vol 8 (4) ◽  
pp. 722-728
Author(s):  
S. B. Katok


2004 ◽  
Vol 7 (4) ◽  
pp. 454-460
Author(s):  
H. M. Kulyk ◽  
V. L. Kulyk


Order ◽  
2014 ◽  
Vol 32 (2) ◽  
pp. 147-155 ◽  
Author(s):  
Stefan Felsner ◽  
Thibault Manneville
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document