Sharp Interface and Voltage Conservation in the Phase Field Method: Application to Cardiac Electrophysiology

2008 ◽  
Vol 30 (2) ◽  
pp. 837-854 ◽  
Author(s):  
Gregery T. Buzzard ◽  
Jeffrey J. Fox ◽  
Fernando Siso-Nadal
2011 ◽  
Vol 1369 ◽  
Author(s):  
Janin Eiken

ABSTRACTThe Phase-field method is recognized as the method of choice for space-resolved microstructure simulation. In theoretic phase-field approaches, the underlying diffuse interface representation is discussed in the sharp interface limit. Applied phase-field models, however, have to cope with interfaces of finite size. Numerical solution based on finite differences naturally implies a discretization error. This error may result in significant deviations from the analytical sharp-interface solution, especially in cases of interface-controlled growth. Benchmark simula-tions revealed a direct correlation between the accuracy of the finite-difference solution and the number of numerical cells used to resolve the finite-sized interface width. This poses a problem, because high numbers of interface cells are unfavorable for numerical performance. To enable efficient high-accuracy computations, a new Finite Phase-Field approach is proposed, which closely links phase-field modeling and numerical discretization. The approach is based on a parabolic potential function, corresponding to phase-field solutions with a sinusoidal interface pro-file. Consideration of this profile during numerical differentiation allows an exact quantification of the bias evoked by grid spacing and interface width, which then a priori can be compensated.


2021 ◽  
Vol 26 ◽  
pp. 102150
Author(s):  
Dong-Cho Kim ◽  
Tomo Ogura ◽  
Ryosuke Hamada ◽  
Shotaro Yamashita ◽  
Kazuyoshi Saida

Author(s):  
Bo Yin ◽  
Johannes Storm ◽  
Michael Kaliske

AbstractThe promising phase-field method has been intensively studied for crack approximation in brittle materials. The realistic representation of material degradation at a fully evolved crack is still one of the main challenges. Several energy split formulations have been postulated to describe the crack evolution physically. A recent approach based on the concept of representative crack elements (RCE) in Storm et al. (The concept of representative crack elements (RCE) for phase-field fracture: anisotropic elasticity and thermo-elasticity. Int J Numer Methods Eng 121:779–805, 2020) introduces a variational framework to derive the kinematically consistent material degradation. The realistic material degradation is further tested using the self-consistency condition, which is particularly compared to a discrete crack model. This work extends the brittle RCE phase-field modeling towards rate-dependent fracture evolution in a viscoelastic continuum. The novelty of this paper is taking internal variables due to viscoelasticity into account to determine the crack deformation state. Meanwhile, a transient extension from Storm et al. (The concept of representative crack elements (RCE) for phase-field fracture: anisotropic elasticity and thermo-elasticity. Int J Numer Methods Eng 121:779–805, 2020) is also considered. The model is derived thermodynamic-consistently and implemented into the FE framework. Several representative numerical examples are investigated, and consequently, the according findings and potential perspectives are discussed to close this paper.


2011 ◽  
Vol 415-417 ◽  
pp. 1482-1485
Author(s):  
Chuang Gao Huang ◽  
Ying Jun Gao ◽  
Li Lin Huang ◽  
Jun Long Tian

The second phase nucleation and precipitation around the edge dislocation are studied using phase-field method. A new free energy function is established. The simulation results are in good agreement with that of theory of dislocation and theory of non-uniform nucleation.


Sign in / Sign up

Export Citation Format

Share Document