scholarly journals A Semicoarsening Multigrid Algorithm for SIMD Machines

1992 ◽  
Vol 13 (6) ◽  
pp. 1460-1469 ◽  
Author(s):  
J. E. Dendy, Jr. ◽  
M. P. Ida ◽  
J. M. Rutledge
Keyword(s):  
Author(s):  
Jingmin Xia ◽  
Patrick E. Farrell ◽  
Florian Wechsung

AbstractWe propose a robust and efficient augmented Lagrangian-type preconditioner for solving linearizations of the Oseen–Frank model arising in nematic and cholesteric liquid crystals. By applying the augmented Lagrangian method, the Schur complement of the director block can be better approximated by the weighted mass matrix of the Lagrange multiplier, at the cost of making the augmented director block harder to solve. In order to solve the augmented director block, we develop a robust multigrid algorithm which includes an additive Schwarz relaxation that captures a pointwise version of the kernel of the semi-definite term. Furthermore, we prove that the augmented Lagrangian term improves the discrete enforcement of the unit-length constraint. Numerical experiments verify the efficiency of the algorithm and its robustness with respect to problem-related parameters (Frank constants and cholesteric pitch) and the mesh size.


Author(s):  
Jonas Dünnebacke ◽  
Stefan Turek ◽  
Christoph Lohmann ◽  
Andriy Sokolov ◽  
Peter Zajac

We discuss how “parallel-in-space & simultaneous-in-time” Newton-multigrid approaches can be designed which improve the scaling behavior of the spatial parallelism by reducing the latency costs. The idea is to solve many time steps at once and therefore solving fewer but larger systems. These large systems are reordered and interpreted as a space-only problem leading to multigrid algorithm with semi-coarsening in space and line smoothing in time direction. The smoother is further improved by embedding it as a preconditioner in a Krylov subspace method. As a prototypical application, we concentrate on scalar partial differential equations (PDEs) with up to many thousands of time steps which are discretized in time, resp., space by finite difference, resp., finite element methods. For linear PDEs, the resulting method is closely related to multigrid waveform relaxation and its theoretical framework. In our parabolic test problems the numerical behavior of this multigrid approach is robust w.r.t. the spatial and temporal grid size and the number of simultaneously treated time steps. Moreover, we illustrate how corresponding time-simultaneous fixed-point and Newton-type solvers can be derived for nonlinear nonstationary problems that require the described solution of linearized problems in each outer nonlinear step. As the main result, we are able to generate much larger problem sizes to be treated by a large number of cores so that the combination of the robustly scaling multigrid solvers together with a larger degree of parallelism allows a faster solution procedure for nonstationary problems.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 879-896 ◽  
Author(s):  
D. Andrew S. Rees

Purpose – The purpose of this paper is to determine the manner in which a yield stress fluid begins convecting when it saturates a porous medium. A sidewall-heated rectangular cavity is selected as the testbed for this pioneering work. Design/methodology/approach – Steady solutions are obtained using a second order accurate finite difference method, line relaxation based on the Gauss-Seidel smoother, a Full Approximation Scheme multigrid algorithm with V-cycling and a regularization of the Darcy-Bingham model to smooth the piecewise linear relation between the Darcy flux and the applied body forces. Findings – While Newtonian fluids always convect whenever the Darcy-Rayleigh number is nonzero, Bingham fluids are found to convect only when the Darcy-Rayleigh number exceeds a value which is linearly dependent on both the Rees-Bingham number and the overall perimeter of the rectangular cavity. Stagnation is always found in the centre of the cavity and in regions close to the four corners. Care must be taken over the selection of the regularization constant. Research limitations/implications – The Darcy-Rayleigh number is restricted to values which are at or below 200. Originality/value – This is the first investigation of the effect of yield stress on nonlinear convection in porous media.


1999 ◽  
Author(s):  
Marcelo J. S. de Lemos ◽  
Maximilian S. Mesquita

Abstract The present work investigates the efficiency of the multigrid numerical method applied to solve two-dimensional laminar velocity and temperature fields inside a rectangular domain. Numerical analysis is based on the finite volume discretization scheme applied to structured orthogonal regular meshes. Performance of the correction storage (CS) multigrid algorithm is compared for different inlet Reynolds number (Rein) and number of grids. Up to four grids were used for both V- and W-cycles. Simultaneous and uncoupled temperature-velocity solution schemes were also applied. Advantages in using more than one grid is discussed. Results further indicate an increase in the computational effort for higher Rein and an optimal number of relaxation sweeps for both V- and W-cycles.


Author(s):  
Aaron F. Shinn ◽  
S. P. Vanka

A semi-implicit pressure based multigrid algorithm for solving the incompressible Navier-Stokes equations was implemented on a Graphics Processing Unit (GPU) using CUDA (Compute Unified Device Architecture). The multigrid method employed was the Full Approximation Scheme (FAS), which is used for solving nonlinear equations. This algorithm is applied to the 2D driven cavity problem and compared to the CPU version of the code (written in Fortran) to assess computational speed-up.


Sign in / Sign up

Export Citation Format

Share Document