An Adaptive Independence Sampler MCMC Algorithm for Bayesian Inferences of Functions

2018 ◽  
Vol 40 (3) ◽  
pp. A1301-A1321
Author(s):  
Zhe Feng ◽  
Jinglai Li
Methodology ◽  
2006 ◽  
Vol 2 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Bonne J. H. Zijlstra ◽  
Marijtje A. J. van Duijn ◽  
Tom A. B. Snijders

The p 2 model is a random effects model with covariates for the analysis of binary directed social network data coming from a single observation of a social network. Here, a multilevel variant of the p 2 model is proposed for the case of multiple observations of social networks, for example, in a sample of schools. The multilevel p 2 model defines an identical p 2 model for each independent observation of the social network, where parameters are allowed to vary across the multiple networks. The multilevel p 2 model is estimated with a Bayesian Markov Chain Monte Carlo (MCMC) algorithm that was implemented in free software for the statistical analysis of complete social network data, called StOCNET. The new model is illustrated with a study on the received practical support by Dutch high school pupils of different ethnic backgrounds.


2021 ◽  
Author(s):  
Tri Tam Le

I give some benefits of the Bayesian analysis method from my personal experience in psychological research.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 1045-1055
Author(s):  
Sup arman ◽  
Yahya Hairun ◽  
Idrus Alhaddad ◽  
Tedy Machmud ◽  
Hery Suharna ◽  
...  

The application of the Bootstrap-Metropolis-Hastings algorithm is limited to fixed dimension models. In various fields, data often has a variable dimension model. The Laplacian autoregressive (AR) model includes a variable dimension model so that the Bootstrap-Metropolis-Hasting algorithm cannot be applied. This article aims to develop a Bootstrap reversible jump Markov Chain Monte Carlo (MCMC) algorithm to estimate the Laplacian AR model. The parameters of the Laplacian AR model were estimated using a Bayesian approach. The posterior distribution has a complex structure so that the Bayesian estimator cannot be calculated analytically. The Bootstrap-reversible jump MCMC algorithm was applied to calculate the Bayes estimator. This study provides a procedure for estimating the parameters of the Laplacian AR model. Algorithm performance was tested using simulation studies. Furthermore, the algorithm is applied to the finance sector to predict stock price on the stock market. In general, this study can be useful for decision makers in predicting future events. The novelty of this study is the triangulation between the bootstrap algorithm and the reversible jump MCMC algorithm. The Bootstrap-reversible jump MCMC algorithm is useful especially when the data is large and the data has a variable dimension model. The study can be extended to the Laplacian Autoregressive Moving Average (ARMA) model.


Author(s):  
N. Thompson Hobbs ◽  
Mevin B. Hooten

This chapter explains how to implement Bayesian analyses using the Markov chain Monte Carlo (MCMC) algorithm, a set of methods for Bayesian analysis made popular by the seminal paper of Gelfand and Smith (1990). It begins with an explanation of MCMC with a heuristic, high-level treatment of the algorithm, describing its operation in simple terms with a minimum of formalism. In this first part, the chapter explains the algorithm so that all readers can gain an intuitive understanding of how to find the posterior distribution by sampling from it. Next, the chapter offers a somewhat more formal treatment of how MCMC is implemented mathematically. Finally, this chapter discusses implementation of Bayesian models via two routes—by using software and by writing one's own algorithm.


Sign in / Sign up

Export Citation Format

Share Document