scholarly journals Lagrangian Methods for a General Inhomogeneous Incompressible Navier--Stokes--Korteweg System with Variable Capillarity and Viscosity Coefficients

2017 ◽  
Vol 49 (5) ◽  
pp. 3476-3495 ◽  
Author(s):  
Cosmin Burtea ◽  
Frédéric Charve
2010 ◽  
Vol 20 (07) ◽  
pp. 1049-1087 ◽  
Author(s):  
BORIS HASPOT

In this paper, we consider the compressible Navier–Stokes equation with density-dependent viscosity coefficients and a term of capillarity introduced formally by van der Waals in Ref. 51. This model includes at the same time the barotropic Navier–Stokes equations with variable viscosity coefficients, shallow-water system and the model introduced by Rohde in Ref. 46. We first study the well-posedness of the model in critical regularity spaces with respect to the scaling of the associated equations. In a functional setting as close as possible to the physical energy spaces, we prove global existence of solutions close to a stable equilibrium, and local in time existence of solutions with general initial data. Uniqueness is also obtained.


2015 ◽  
Vol 66 (1) ◽  
pp. 91-115 ◽  
Author(s):  
Elena Celledoni ◽  
Bawfeh Kingsley Kometa ◽  
Olivier Verdier

2009 ◽  
Vol 623 ◽  
pp. 387-411 ◽  
Author(s):  
VICENTE GARZÓ ◽  
FRANCISCO VEGA REYES ◽  
JOSÉ MARÍA MONTANERO

We evaluate in this work the hydrodynamic transport coefficients of a granular binary mixture in d dimensions. In order to eliminate the observed disagreement (for strong dissipation) between computer simulations and previously calculated theoretical transport coefficients for a monocomponent gas, we obtain explicit expressions of the seven Navier–Stokes transport coefficients by the use of a new Sonine approach in the Chapman–Enskog (CE) theory. This new approach consists of replacing, where appropriate in the CE procedure, the Maxwell–Boltzmann distribution weight function (used in the standard first Sonine approximation) by the homogeneous cooling state distribution for each species. The rationale for doing this lies in the well-known fact that the non-Maxwellian contributions to the distribution function of the granular mixture are more important in the range of strong dissipation we are interested in. The form of the transport coefficients is quite common in both standard and modified Sonine approximations, the distinction appearing in the explicit form of the different collision frequencies associated with the transport coefficients. Additionally, we numerically solve by the direct simulation Monte Carlo method the inelastic Boltzmann equation to get the diffusion and the shear viscosity coefficients for two and three dimensions. As in the case of a monocomponent gas, the modified Sonine approximation improves the estimates of the standard one, showing again the reliability of this method at strong values of dissipation.


Sign in / Sign up

Export Citation Format

Share Document