Boundary Feedback Stabilization of the Undamped Euler--Bernoulli Beam with Both Ends Free

2004 ◽  
Vol 43 (1) ◽  
pp. 341-356 ◽  
Author(s):  
Faming Guo ◽  
Falun Huang
2021 ◽  
pp. 1-38
Author(s):  
Marianna A. Shubov

The distribution of natural frequencies of the Euler–Bernoulli beam resting on elastic foundation and subject to an axial force in the presence of several damping mechanisms is investigated. The damping mechanisms are: ( i ) an external or viscous damping with damping coefficient ( − a 0 ( x )), ( ii ) a damping proportional to the bending rate with the damping coefficient a 1 ( x ). The beam is clamped at the left end and equipped with a four-parameter (α, β, κ 1 , κ 2 ) linear boundary feedback law at the right end. The 2 × 2 boundary feedback matrix relates the control input (a vector of velocity and its spacial derivative at the right end) to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space of the system. The dynamics generator has a purely discrete spectrum (the vibrational modes). Explicit asymptotic formula for the eigenvalues as the number of an eigenvalue tends to infinity have been obtained. It is shown that the boundary control parameters and the distributed damping play different roles in the asymptotical formulas for the eigenvalues of the dynamics generator. Namely, the damping coefficient a 1 and the boundary controls κ 1 and κ 2 enter the leading asymptotical term explicitly, while damping coefficient a 0 appears in the lower order terms.


2019 ◽  
Vol 25 ◽  
pp. 4 ◽  
Author(s):  
Kun-Yi Yang ◽  
Jun-Min Wang

This paper considers a one-dimensional Euler-Bernoulli beam equation where two collocated actuators/sensors are presented at the internal point with pointwise feedback shear force and angle velocity at the arbitrary position ξ in the bounded domain (0,1). The boundary x = 0 is simply supported and at the other boundary x = 1 there is a shear hinge end. Both of the observation signals are subjected to a given time delay τ ( >0). Well-posedness of the open-loop system is shown to illustrate availability of the observer. An observer is then designed to estimate the state at the time interval when the observation is available, while a predictor is designed to predict the state at the time interval when the observation is not available. Pointwise output feedback controllers are introduced to guarantee the closed-loop system to be exponentially stable for the smooth initial values when ξ ∈ (0, 1) is a rational number satisfying ξ ≠ 2l∕(2m − 1) for any integers l, m. Simulation results demonstrate that the proposed feedback design effectively stabilizes the performance of the pointwise control system with time delay.


Sign in / Sign up

Export Citation Format

Share Document