Spectral analysis of Euler–Bernoulli beam model with distributed damping and fully non-conservative boundary feedback matrix

2021 ◽  
pp. 1-38
Author(s):  
Marianna A. Shubov

The distribution of natural frequencies of the Euler–Bernoulli beam resting on elastic foundation and subject to an axial force in the presence of several damping mechanisms is investigated. The damping mechanisms are: ( i ) an external or viscous damping with damping coefficient ( − a 0 ( x )), ( ii ) a damping proportional to the bending rate with the damping coefficient a 1 ( x ). The beam is clamped at the left end and equipped with a four-parameter (α, β, κ 1 , κ 2 ) linear boundary feedback law at the right end. The 2 × 2 boundary feedback matrix relates the control input (a vector of velocity and its spacial derivative at the right end) to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space of the system. The dynamics generator has a purely discrete spectrum (the vibrational modes). Explicit asymptotic formula for the eigenvalues as the number of an eigenvalue tends to infinity have been obtained. It is shown that the boundary control parameters and the distributed damping play different roles in the asymptotical formulas for the eigenvalues of the dynamics generator. Namely, the damping coefficient a 1 and the boundary controls κ 1 and κ 2 enter the leading asymptotical term explicitly, while damping coefficient a 0 appears in the lower order terms.

2019 ◽  
Vol 84 (5) ◽  
pp. 873-911 ◽  
Author(s):  
Marianna A Shubov ◽  
Laszlo P Kindrat

Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \times 2$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$. The role of the control parameters is examined and the following results have been proven: (i) when $\beta \neq 0$, the set of vibrational modes is asymptotically close to the vertical line on the complex $\nu$-plane given by the equation $\Re \nu = \alpha + (1-k_1k_2)/\beta$; (ii) when $\beta = 0$ and the parameter $K = (1-k_1 k_2)/(k_1+k_2)$ is such that $\left |K\right |\neq 1$ then the following relations are valid: $\Re (\nu _n/n) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iii) when $\beta =0$, $|K| = 1$, and $\alpha = 0$, then the following relations are valid: $\Re (\nu _n/n^2) = O\left (1\right )$ and $\Im (\nu _n/n) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iv) when $\beta =0$, $|K| = 1$, and $\alpha>0$, then the following relations are valid: $\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$.


Author(s):  
Marianna A. Shubov

The Euler–Bernoulli beam model with non-conservative feedback-type boundary conditions is investigated. Components of the two-dimensional input vector are shear and moment at the right end, and components of the observation vector are time derivative of displacement and slope at the right end. The boundary matrix containing four control parameters relates input and observation. The following results are presented: (i) if one and only one of the control parameters is positive and the rest of them are equal to zero, then the set of the eigenmodes is located in the open left half-plane of the complex plane, which means that all eigenmodes are stable; (ii) if the diagonal elements of the boundary matrix are positive and off-diagonal elements are zeros, then the set of the eigenmodes is located in the open left half-plane, which implies stability of all eigenmodes; (iii) specific combinations of the diagonal and off-diagonal elements have been found to ensure the stability results. To prove the results, two special relations between the eigenmodes and mode shapes of the non-self-adjoint problem and clamped–free self-adjoint problem have been established.


2013 ◽  
Vol 11 (02) ◽  
pp. 1350017 ◽  
Author(s):  
GÜNTHER HÖRMANN ◽  
SANJA KONJIK ◽  
LJUBICA OPARNICA

We study the initial-boundary value problem for an Euler–Bernoulli beam model with discontinuous bending stiffness laying on a viscoelastic foundation and subjected to an axial force and an external load both of Dirac-type. The corresponding model equation is a fourth-order partial differential equation and involves discontinuous and distributional coefficients as well as a distributional right-hand side. Moreover the viscoelastic foundation is of Zener-type and described by a fractional differential equation with respect to time. We show how functional analytic methods for abstract variational problems can be applied in combination with regularization techniques to prove existence and uniqueness of generalized solutions.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 898
Author(s):  
Michaela Bobková ◽  
Lukáš Pospíšil

We are interested in a contact problem for a thin fixed beam with an internal point obstacle with possible rotation and shift depending on a given swivel and sliding friction. This problem belongs to the most basic practical problems in, for instance, the contact mechanics in the sustainable building construction design. The analysis and the practical solution plays a crucial role in the process and cannot be ignored. In this paper, we consider the classical Euler–Bernoulli beam model, which we formulate, analyze, and numerically solve. The objective function of the corresponding optimization problem for finding the coefficients in the finite element basis combines a quadratic function and an additional non-differentiable part with absolute values representing the influence of considered friction. We present two basic algorithms for the solution: the regularized primal solution, where the non-differentiable part is approximated, and the dual formulation. We discuss the disadvantages of the methods on the solution of the academic benchmarks.


2015 ◽  
Vol 82 (9) ◽  
Author(s):  
X. Chen ◽  
S. A. Meguid

In this paper, we investigate the asymmetric bifurcation behavior of an initially curved nanobeam accounting for Lorentz and electrostatic forces. The beam model was developed in the framework of Euler–Bernoulli beam theory, and the surface effects at the nanoscale were taken into account in the model by including the surface elasticity and the residual surface tension. Based on the Galerkin decomposition method, the model was simplified as two degrees of freedom reduced order model, from which the symmetry breaking criterion was derived. The results of our work reveal the significant surface effects on the symmetry breaking criterion for the considered nanobeam.


2014 ◽  
Vol 668-669 ◽  
pp. 201-204
Author(s):  
Hong Liang Tian

Timoshenko beam is an extension of Euler-Bernoulli beam to interpret the transverse shear impact. The more refined Timoshenko beam relaxes the normality assumption of plane section that remains plane and normal to the deformed centerline. The manuscript presents some exact concise analytic solutions on deflection and stress resultants of NET single-span Timoshenko beam with general distributed force and 6 kinds of standard boundary conditions, adopting its counterpart Euler-Bernoulli beam solutions. Engineering example shows that scale impact would not unveil itself for micro structure with micrometer μm-order length, yet will be prominent for nanostructure with nanometer nm-order length. When simply supported CNTs is undergone to a concentrative force at the median and complete bend moment, scale action is observed along the ensemble CNTs, while it unfurls itself the most at the position of the concentrated strength. When a clamped-free CNTs is exposed to a centralized force at the mesial and distributed force, there is no scale impact about the deflection at all positions on the left border of the concentrated strength position, while such operation inspires at once at all positions on the right margin of the concentrated strength position. When a clamped-clamped CNTs is lain under a concentrative strength at the middle, the deflection of NET Euler-Bernoulli CNTs reflects scale effect completely. Notable differences between the deflection of Euler-Bernoulli CNTs and that of Timoshenko CNTs are reflected at large ratio of diameter versus length. The deflection of NET clamped-free and simply supported Timoshenko beam doesn’t introduce surplus scale process in terms of its counterpart, NET Euler-Bernoulli beam. However, the deflection of NET clamped-clamped Timoshenko beam does involve additional scale impact solely including the method when the concentrated strength position is at the midway in the beam-length direction.


Sign in / Sign up

Export Citation Format

Share Document