Effect of blood flow occlusion on neuromuscular fatigue following sustained maximal isometric contraction

2020 ◽  
Vol 45 (7) ◽  
pp. 698-706 ◽  
Author(s):  
Dustin J. Oranchuk ◽  
Jérôme Koral ◽  
Gustavo R. da Mota ◽  
James G. Wrightson ◽  
Rogério Soares ◽  
...  

Sustained isometric maximal voluntary contractions (IMVCs) have blood flow occlusive effects on the microvasculature. However, it is unknown if this effect would be magnified with additional blood flow restriction via a cuff and what the influence on fatigue development would be. Twelve healthy male participants performed a 1-min IMVC of the knee extensors with and without additional blood flow occlusion induced by pneumatic cuff in counterbalanced order on separate days. Vastus lateralis muscle deoxygenation was estimated via near-infrared spectroscopy–derived tissue oxygen saturation (SmO2) throughout the fatiguing contraction. Central and peripheral measures of neuromuscular fatigue (NMF) were assessed via surface electromyography (EMG) and force responses to voluntary contractions and peripheral nerve/transcranial magnetic stimulations before, immediately after, and throughout an 8-min recovery period. SmO2, force, and EMG amplitude decreased during the 1-min IMVC, but there were no between-condition differences. Similarly, no significant (p > 0.05) between-condition differences were detected for any dependent variable immediately after the fatiguing contraction. Transcranial magnetic stimulation (TMS)-derived voluntary activation was lower (p < 0.05) in the no-cuff condition during the recovery period. Sustained IMVC results in a similar degree of muscle deoxygenation and NMF as IMVCs with additional occlusion, providing further evidence that a sustained IMVC induces full ischemia. Novelty NMF etiology, muscle oxygenation, and corticospinal factors during an IMVC are similar with or without an occlusion cuff. Contrary to all other measures, TMS-evaluated voluntary activation returned to baseline faster following the occluded condition.

Motor Control ◽  
2021 ◽  
Vol 25 (2) ◽  
pp. 264-282
Author(s):  
Rihab Borji ◽  
Firas Zghal ◽  
Nidhal Zarrouk ◽  
Sonia Sahli ◽  
Haithem Rebai

The authors explored neuromuscular fatigue in athletes with intellectual disability (AID) compared with sedentary individuals with intellectual disability (SID) and individuals with typical development. Force, voluntary activation level, potentiated resting twitch, and electromyography signals were assessed during isometric maximal voluntary contractions performed before and immediately after an isometric submaximal exhaustive contraction (15% isometric maximal voluntary contractions) and during recovery period. AID presented shorter time to task failure than SID (p < .05). The three groups presented similar isometric maximal voluntary contraction decline and recovery kinetic. Both groups with intellectual disability presented higher voluntary activation level and root mean square normalized to peak-to-peak M-wave amplitude declines (p < .05) compared with individuals with typical development. These declines were more pronounced in SID (p < .05) than in AID. The AID recovered their initial voluntary activation level later than controls, whereas SID did not. SID presented lower potentiated resting twitch decline compared with AID and controls with faster recovery (p < .05). AID presented attenuated central fatigue and accentuated peripheral fatigue compared with their sedentary counterparts, suggesting a neuromuscular profile close to that of individuals with typical development.


2018 ◽  
Vol 125 (2) ◽  
pp. 313-319 ◽  
Author(s):  
Danilo Iannetta ◽  
Dai Okushima ◽  
Erin Calaine Inglis ◽  
Narihiko Kondo ◽  
Juan M Murias ◽  
...  

It was recently demonstrated that an O2 extraction reserve, as assessed by the near-infrared spectroscopy (NIRS)-derived deoxygenation signal ([HHb]), exists in the superficial region of vastus lateralis (VL) muscle during an occlusion performed at the end of a ramp-incremental test. However, it is unknown whether this reserve is present and/or different in magnitude in other portions and depths of the quadriceps muscles. We tested the hypothesis that an O2 extraction reserve would exist in other regions of this muscle but is greater in deep compared with more superficial portions. Superficial (VL-s) and deep VL (VL-d) as well as superficial rectus femoris (RF-s) were monitored by a combination of low- and high-power time-resolved (TRS) NIRS. During the occlusion immediately post-ramp-incremental test there was a significant overshoot in the [HHb] signal ( P < 0.05). However, the magnitude of this increase was greater in VL-d (93.2 ± 42.9%) compared with VL-s (55.0 ± 19.6%) and RF-s (47.8 ± 14.0%) ( P < 0.05). The present study demonstrated that an O2 extraction reserve exists in different pools of active muscle fibers of the quadriceps at the end of a ramp exercise to exhaustion. The greater magnitude in the reserve observed in the deeper portion of VL, however, suggests that this portion of muscle may present a greater surplus of oxygenated blood, which is likely due to a greater population of slow-twitch fibers. These findings add to the notion that the plateau in the [HHb] signal toward the end of a ramp-incremental exercise does not indicate the upper limit of O2 extraction. NEW & NOTEWORTHY Different portions of the quadriceps muscles exhibited an untapped O2 extraction reserve during a blood flow occlusion performed at the end of a ramp-incremental exercise. In the deeper portion of the vastus lateralis muscle, this reserve was greater compared with superficial vastus lateralis and rectus femoris. These data suggest that the O2 extraction reserve may be dependent on the vascular and/or oxidative capacities of the muscles.


Author(s):  
Christopher Latella ◽  
Matheus Daros Pinto ◽  
James L. Nuzzo ◽  
Janet Louise Taylor

For a fatigued hand muscle, group III/IV afferent firing maintains intracortical facilitation (ICF) without influencing corticospinal excitability. Exercise of larger muscles produces greater afferent firing. Thus, this study investigated if fatigue-related firing of group III/IV afferents from a large muscle group (quadriceps) modulates intracortical and corticospinal networks. In two sessions, participants (n=18) completed a 2-minute maximal voluntary isometric contraction (MVIC) of knee extensors with (OCC) or without (CON) post-exercise blood flow occlusion to maintain afferent firing. Pre- and post-exercise, single- and paired-pulse transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEPs) from vastus lateralis (VL), vastus medialis and rectus femoris. Test pulse intensities evoked VL MEPs of ~0.5 mV and were adjusted post-exercise. The conditioning stimulus for ICF and short interval intracortical inhibition (SICI) was constant and set to evoke ~50% of maximum ICF. Muscle pain was also assessed (0-10 scale). Post-exercise, muscle pain was greater for OCC than CON (Median = 8.6 vs. 1.0; P<0.001). MEPs were depressed for CON (all muscles: ∆ -24.3 to -34.1%; P≤0.018) despite increased stimulus intensity (~10%, P<0.001), but both MEPs and intensity remained unchanged for OCC. ICF was depressed post-exercise in OCC (VL and RF: ∆ -59.8% and -28.8%, respectively P=0.016-0.018) but not CON (all muscles: ∆ -3.8 to -44.3%, P=0.726-1.0), but was not different between conditions (interactions: P=0.143-0.252). No interactions were observed for SICI (all muscles: P≥0.266). Group III/IV afferent firing counteracts the post-contraction depression of MEPs in quadriceps. However, intracortical inhibitory and facilitatory networks are not implicated in this response.


2003 ◽  
Vol 28 (3) ◽  
pp. 434-445 ◽  
Author(s):  
Guillaume Y. Millet ◽  
Vincent Martin ◽  
Nicola A. Maffiuletti ◽  
Alain Martin

The aim of this study was to characterize neuromuscular fatigue in knee extensor muscles after a marathon skiing race (mean ± SD duration = 159.7 ± 17.9 min). During the 2 days preceding the event and immediately after, maximal percutaneous electrical stimulations (single twitch, 0.5-s tetanus at 20 and 80 Hz) were applied to the femoral nerve of 11 trained skiers. Superimposed twitches were also delivered during maximal voluntary contraction (MVC) to determine maximal voluntary activation (%VA). EMG was recorded from the vastus lateralis muscle. MVC decreased with fatigue from 171.7 ± 33.7 to 157.3 ± 35.2 Nm (-8.4%; p < 0.005) while %VA did not change significantly. The RMS measured during MVC and peak-to-peak amplitude of the compound muscle action potential (PPA) from the vastus lateralis decreased with fatigue by about 30% (p < 0.01), but RMS•PPA−1was similar before and after the ski marathon. Peak tetanus tension at 20 Hz and 80 Hz (P020 and P080, respectively) did not change significantly, but P020•P080−1 increased (p < 0.05) after the ski marathon. Data from electrically evoked single twitches showed greater peak mechanical response, faster rate of force development, and shorter contraction time in the fatigued state. From these results it can be concluded that a ski skating marathon (a) alters slightly but significantly maximal voluntary strength of the knee extensors without affecting central activation, and (b) induces both potentiation and fatigue. Key words: low- and high-frequency electrical stimulation, central activation, potentiation


2014 ◽  
Vol 39 (12) ◽  
pp. 1338-1344 ◽  
Author(s):  
Israel Halperin ◽  
David Copithorne ◽  
David G. Behm

Nonlocal muscle fatigue occurs when fatiguing 1 muscle alters performance of another rested muscle. The purpose of the study was to investigate if fatiguing 2 separate muscles would affect the same rested muscle, and if fatiguing the same muscle would affect 2 separate muscles. Twenty-one trained males participated in 2 studies (n = 11; n = 10). Subjects performed 2 pre-test maximum voluntary contractions (MVCs) with the nondominant knee extensors. Thereafter they performed two 100-s MVCs with their dominant knee extensors, elbow flexors, or rested. Between and after the sets, a single MVC with the nondominant rested knee extensors was performed. Subsequently, 12 nondominant knee extensors repeated MVCs were completed. Force, quadriceps voluntary activation (VA), and electromyography (EMG) were measured. The same protocol was employed in study 2 except the nondominant elbow-flexors were tested. Study 1: Compared with control conditions, a significant decrease in nondominant knee extensors force, EMG, and VA was found under both fatiguing conditions (P ≤ 0.05; effect size (ES) = 0.91–1.15; 2%–8%). Additionally, decrements in all variables were found from the first post-intervention MVC to the last (P ≤ 0.05; ES = 0.82–2.40; 9%–20%). Study 2: No differences were found between conditions for all variables (P ≥ 0.33; ES ≤ 0.2; ≤3.0%). However, all variables decreased from the first post-intervention MVC to the last (P ≤ 0.05; ES = 0.4–3.0; 7.2%–19.7%). Whereas the rested knee extensors demonstrated nonlocal effects regardless of the muscle being fatigued, the elbow-flexors remained unaffected. This suggests that nonlocal effects are muscle specific, which may hold functional implications for training and performance.


2016 ◽  
Vol 23 (4) ◽  
pp. 293-300 ◽  
Author(s):  
Brian D. Tran ◽  
Abraham Chiu ◽  
Charlene Tran ◽  
Danica Rose Rogacion ◽  
Nicole Tfaye ◽  
...  

2015 ◽  
Vol 47 ◽  
pp. 548
Author(s):  
Scott J. Dankel ◽  
Brian E. Barnett ◽  
Brittany R. Counts ◽  
Allison L. Nooe ◽  
Takashi Abe ◽  
...  

2010 ◽  
Vol 108 (5) ◽  
pp. 1224-1233 ◽  
Author(s):  
Vincent Martin ◽  
Hugo Kerhervé ◽  
Laurent A. Messonnier ◽  
Jean-Claude Banfi ◽  
André Geyssant ◽  
...  

This experiment investigated the fatigue induced by a 24-h running exercise (24TR) and particularly aimed at testing the hypothesis that the central component would be the main mechanism responsible for neuromuscular fatigue. Neuromuscular function evaluation was performed before, every 4 h during, and at the end of the 24TR on 12 experienced ultramarathon runners. It consisted of a determination of the maximal voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), the maximal voluntary activation (%VA) of the KE and PF, and the maximal compound muscle action potential amplitude (Mmax) on the soleus and vastus lateralis. Tetanic stimulations also were delivered to evaluate the presence of low-frequency fatigue and the KE maximal muscle force production ability. Strength loss occurred throughout the exercise, with large changes observed after 24TR in MVC for both the KE and PF muscles (−40.9 ± 17.0 and −30.3 ± 12.5%, respectively; P < 0.001) together with marked reductions of %VA (−33.0 ± 21.8 and −14.8 ± 18.9%, respectively; P < 0.001). A reduction of Mmax amplitude was observed only on soleus, and no low-frequency fatigue was observed for any muscle group. Finally, KE maximal force production ability was reduced to a moderate extent at the end of the 24TR (−10.2%; P < 0.001), but these alterations were highly variable ( ± 15.7%). These results suggest that central factors are mainly responsible for the large maximal muscle torque reduction after ultraendurance running, especially on the KE muscles. Neural drive reduction may have contributed to the relative preservation of peripheral function and also affected the evolution of the running speed during the 24TR.


2002 ◽  
Vol 103 (2) ◽  
pp. 165-174 ◽  
Author(s):  
V. Muralidharan ◽  
C. Malcontenti-Wilson ◽  
Chris Christophi

Sign in / Sign up

Export Citation Format

Share Document