Effect of α- and β-cyclodextrins on the photochemical activity of thylakoid membranes and photosystem II particles from barley (Hordeum vulgare): oxygen evolution and whole chain electron transport

2005 ◽  
Vol 83 (3) ◽  
pp. 320-328 ◽  
Author(s):  
S Dudekula ◽  
G Sridharan ◽  
M Fragata

The effect of α- and β-cyclodextrin (CD) concentration (0–16 mM) on oxygen evolution in photosystem II (PSII) and whole chain electron transport (H2O to photosystem I (PSI)) was studied in isolated thylakoid membranes and PSII particles from barley (Hordeum vulgare L.). The CDs are cyclic oligosaccharides containing, for example, six (α-CD) or seven (β-CD) α-D-glucose residues linked by α-1,4 glycosidic bonds. These compounds alter the lipid composition of the thylakoids and most likely also the structure of their membrane proteins. We show for the first time that in the thylakoid membranes, but not in the isolated PSII particles, the relationship between oxygen evolution in PSII and the CD concentration is represented by a S-shaped (sigmoidal) curve displaying a sharp inflexion point or transition. We found, in addition, that the CDs inhibit the whole chain electron transport from H2O to methyl viologen, that is, PSI, measured as oxygen uptake, according to a nonlinear dependence that is also sigmoidal. Moreover, another interesting observation is that in the thylakoid membranes the electron transport from H2O to PSI is quite well inhibited at low CD concentrations (<4–6 mM), whereas the oxygen evolution in PSII is only substantially enhanced at CD concentrations greater than 8–10 mM. To explain this, we suggest that the mechanisms underlying the inhibition of electron transfer from H2O to PSI become operative before those giving origin to the enhancement of oxygen evolution in PSII.Key words: cyclodextrins, electron transfer, nonlinearity, oxygen evolution, photosystem, thylakoid membrane.

1990 ◽  
Vol 17 (6) ◽  
pp. 641 ◽  
Author(s):  
RE Cleland ◽  
RT Ramage ◽  
C Critchley

Illumination of isolated thylakoids or intact leaves with excess light resulted in a decline in photosynthetic activity measured as primary charge separation in photosystem II (ΔA320), photosystem II- dependent electron transport, or leaf oxygen evolution. It is concluded that the primary damage causing photoinhibition involves inactivation of the reaction centre function, and that degradation of Dl may be a consequence of that event.


1993 ◽  
Vol 48 (3-4) ◽  
pp. 163-167
Author(s):  
Koichi Yoneyama ◽  
Yoshihiro Nakajima ◽  
Masaru Ogasawara ◽  
Hitoshi Kuramochi ◽  
Makoto Konnai ◽  
...  

Abstract Through the studies on structure-activity relationships of 5-acyl-3-(1-aminoalkylidene)-4-hydroxy-2 H-pyran-2,6(3 H)-dione derivatives in photosystem II (PS II) inhibition, overall lipophilicity of the molecule was found to be a major determinant for the activity. In the substituted N -benzyl derivatives, not only the lipophilicity but also the electronic and steric characters of the substituents greatly affected the activity. Their mode of PS II inhibition seemed to be similar to that of DCMU , whereas pyran-enamine derivatives needed to be highly lipophilic to block the electron transport in thylakoid membranes, which in turn diminished the permeability through biomembranes.


1994 ◽  
Vol 72 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Ernesto Bernal-Morales ◽  
Alfonso Romo De Vivar ◽  
Bertha Sanchez ◽  
Martha Aguilar ◽  
Blas Lotina-Hennsen

The inhibition of ATP synthesis, proton uptake, and electron transport (basal, phosphorylating, and uncoupled) from water to methylviologen by ivalin (a naturally occurring sesquiterpene lactone in Zaluzania triloba and Iva microcephala) indicates that it acts as electron transport inhibitor. Since photosystem I and electron transport from DPC to QA were not affected, while the electron flow of uncoupled photosystem II from H2O to DAD and from water to silicomolybdate was inhibited, we concluded that the site of inhibition of ivalin is located at the oxygen evolution level. Key words: oxygen evolution, ivalin, photosynthesis, sesquiterpene lactone.


1983 ◽  
Vol 38 (9-10) ◽  
pp. 793-798 ◽  
Author(s):  
W. S. Cohen ◽  
J. R. Barton

Photosystem II particles that retain the ability to evolve O2 have been used to examine acceptor and inhibitor sites in the photosynthetic electron transfer chain between Q and plastoquinone. Employing the water to dichlorobenzoquinone reaction to assay photosystem II activity, we have demonstrated that electron transport in thylakoids and particles is equally sensitive to inhibition by DCMU. dinoseb, metribuzin, HQNO and DBMIB. Based on differential sensitivity to inhibition by DCMU vs. HQNO or DBMIB, we suggest that when synthetic quinones, e.g. 2,6-dichlorobenzoquinone operate as Hill reagents in particles they are reduced primarily by the plastoquinone pool. When synthetic quinones, e.g. 5,6-methylenedioxy-2,3-dimethyl benzoquinone act as autoxidizable acceptors they accept electron from the Q/B complex at a point that is located between the DCMU and HQNO (DBMIB) inhibition sites.


1996 ◽  
Vol 51 (1-2) ◽  
pp. 47-52 ◽  
Author(s):  
W. I. Gruszecki ◽  
K. Strzałk ◽  
K.P. Bader ◽  
A. Radunz ◽  
G.H. Schmid

Abstract In our previous study (Gruszecki et al., 1995) we have postulated that the mechanism of cyclic electron transport around photosystem II, active under overexcitation of the photosynthetic apparatus by light is under control of the xanthophyll cycle. The combination of dif­ferent light quality and thylakoids having various levels of xanthophyll cycle pigments were applied to support this hypothesis. In the present work photosynthetic oxygen evolution from isolated tobacco chloroplasts was measured by means of mass spectrometry under conditions of high or low levels of violaxanthin, being transformed to zeaxanthin during dark incubation in an ascorbate containing buffer at pH 5.7. Analysis of oxygen evolution and of light-induced oxygen uptake indicate that the de-epoxidation of violaxanthin to zeaxanthin results in an increased cyclic electron transport around PS II, thus dimishing the vectorial electron flow from water. An effect similar to de-epoxidation was observed after incubation of thylakoid membranes with specific antibodies against violaxanthin.


2004 ◽  
Vol 47 (2) ◽  
pp. 142-148 ◽  
Author(s):  
Hong Jin Hwang ◽  
Eun Mi Kim ◽  
Tae Hyong Rhew ◽  
Choon-Hwan Lee

Sign in / Sign up

Export Citation Format

Share Document