primary damage
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 28)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
pp. 298-304
Author(s):  
Alfiani Zukhruful Fitri Rifa’i ◽  
Rizqi Apsari Fairuz Kamila ◽  
Clara Alverina ◽  
Reny I’tishom

Traumatic brain injury (TBI) continues to be a major contributor to morbidity, disability, and mortality in all age groups. Initial brain damage is accompanied by acute and irreversible primary damage to the parenchyma, while subsequent secondary brain damage often progresses slowly over months to years, thus providing a window for therapeutic intervention. The most frequent case which happened is excessive oxidative stress and calcium release after brain injury. Although some traditional antioxidants have been clinically approved, the efficacy is far from satisfactory due to their low ROS-scavenging efficiency, instability, toxicity, or inadequate penetration of the blood-brain barrier. Moreover, the combination of Nanozyme based-bandage with Pt/CeO2 atom catalysis with electrospinning nanofibers N-type voltage-gated calcium channel blocker (SNX-185) is predicted to be as promising as a potential novel to reduce secondary injury of TBI. Therefore, the duo could cut down morbidity and mortality rates because of TBI in the future, noninvasively.


2022 ◽  
Vol 8 ◽  
Author(s):  
Aniruddh Das ◽  
Eberhard Altstadt ◽  
Cornelia Kaden ◽  
Garima Kapoor ◽  
Shavkat Akhmadaliev ◽  
...  

Nanoindentation of ion-irradiated nuclear structural materials and model alloys has received considerable interest in the published literature. In the reported studies, the materials were typically exposed to irradiations using a single ion energy varying from study to study from below 1 MeV to above 10 MeV. However, systematic investigations into the effect of self-ion energy are still insufficient, meaning that the possibilities to gain insight from systematic energy variations are not yet exhausted. We have exposed pure Fe, ferritic Fe-9Cr, martensitic Fe-9Cr and the ferritic-martensitic reduced-activation steel Eurofer 97 to ion irradiations at 300°C using 1, 2 and 5 MeV Fe2+ ions as well as 8 MeV Fe3+ ions and applied nanoindentation, using a Berkovich diamond indenter, to characterize as-irradiated samples and unirradiated references. The effect of the ion energy on the measured nanoindentation response is discussed for each material. Two versions of a primary-damage-informed model are applied to fit the measured irradiation-induced hardening. The models are critically compared with the experimental results also taking into account reported microstructural evidence. Related ion-neutron transferability issues are addressed.


2021 ◽  
Vol 1 ◽  
pp. 17-18
Author(s):  
Neslihan Yanikömer ◽  
Rahim Nabbi ◽  
Klaus Fischer-Appelt

Abstract. The current safety concept provides for a period in the range of 40 years for interim storage of spent fuel elements. Since the requirement for proof of safety for to up to 100 years arises, the integrity of the spent fuel elements in prolonged interim storage and long-term repositories is becoming a critical issue. In response to this safety matter, this study aims to assess the impact of radiation-induced microstructures on the mechanical properties of spent fuel elements, in order to provide reliable structural performance limits and safety margins. The physical processes involved in radiation damage and the effect of radiation damage on mechanical properties are inherently multiscalar and hierarchical. Damage evolution under irradiation begins at the atomic scale, with primary knock-on atoms (PKAs) resulting in displacement cascades (primary damage), followed by the defect clusters leading to microstructural deformations. In this context, we have developed and applied a multiscale simulation methodology consistent with the multistage damage mechanisms and the corresponding effects on the mechanical properties of spent fuel cladding and its integrity. Within the improved hierarchical modelling sequence, the effect of the radiation field on the fuel element cladding material (Zircalloy-4) is assessed using Monte Carlo methods. A molecular dynamics method is employed to model damage formation by PKAs and primary damage defect configurations. The formation of clusters and evolution of microstructures are simulated by extending the simulation sequence to a longer time scale with the kinetic Monte Carlo (KMC) method. Transferring the calculated radiation-induced microstructures into macroscopic quantities is ultimately decisive for the structural/mechanical behaviour and stability of the cladding material, and thus for long-term integrity of the spent fuel elements. Results of the multiscale modelling and simulations as well as a comparison with experimental results will be presented at the conference session.


2021 ◽  
Vol 2 (3) ◽  
pp. 235-248
Author(s):  
Varvara Y. Taskina ◽  
Alexandra E. Demkina ◽  
Tamara M. Gazashvili ◽  
Andrey S. Shkoda ◽  
Anton V. Vladzymyrskyy ◽  
...  

BACKGROUND: Coronavirus disease (COVID-19) affects the cardiovascular system and the primary damage to the respiratory system involved in the pathological process. However, in the available literature, the electrocardiography (ECG) analyses are based only on small-sample studies and case reports, which determine the relevance of larger-scale studies to clarify the nature and prevalence of ECG abnormalities in subjects with confirmed coronavirus infection. AIM: To determine the distribution of ECG changes in COVID-19 patients representing a non-selective population of Moscow residents. MATERIALS AND METHODS: We performed a retrospective analysis of ECGs from 42,799 patients from March 10, 2020 to March 10, 2021 with a verified diagnosis of COVID-19 was performed. The study included patients admitted to Moscow clinical hospitals connected to the ECG IT Center. A standard 12-lead ECG was obtained and transmitted via an Internet connection to the server of the ECG IT Center, where the ECG interpretation was performed. RESULTS: ECG changes were detected in 54% of patients. The most common cardiac arrhythmias were supraventricular extrasystole (12.6%) and atrial fibrillation (12.0%) reported in patients. Signs of the overloaded right heart were detected in 12.5% of cases, of which the ECG pattern of pulmonary embolism was confirmed in 485 patients (1.13%). Infarction ECG pattern was observed in 4.5% of patients, among which 3 cases of Brugada ECG pattern were reported. The incidence of ST-T changes was 2.2% of all study patients. Prolonged QT and QTc intervals were recorded in 540 patients (1.26%). In addition, individual cases of ventricular fibrillation, Frederick syndrome, and atrioventricular block of various degrees were reported. CONCLUSION: The distribution of incidence of ECG changes in COVID-19 was shown based on the data obtained. The high incidence of atrial fibrillation, which is a risk factor for thromboembolic complications, was confirmed. Moreover, a significant prevalence of ECG patterns of overloaded right heart was shown, some are associated with pulmonary embolism. Other reported ECG changes were characterized by a significantly lower prevalence, which does not reduce their clinical significance. The data obtained may be used to improve COVID-19 patient management strategy in the future.


Author(s):  
Elena S. Pavlyuchenko ◽  
Alexander A. Mirsaitov ◽  
Mariya N. Diakonova ◽  
Egor A. Karev

Hodgkin lymphoma is a malignant disease with clonal proliferation of B-cells and high-level reactive inflammatory microenvironment. The main clinical sings are lymphadenopathy and toxic symptoms. Neurological symptoms as usual can be a result of compression or tumor infiltration of nervous structures. The primary damage of CNS occurs from 0,2% to 0,5% of all cases HL. Paraneoplastic neurological syndrome is a group of rare (an average 1 case on 10000 patients) neurological disorders against the background of oncological process. The pathophysiologic mechanism is due to production of antibody which is both to tumor cells and nerve cells. These antibodies are called onconeural autoantibodies. The hallmark which make diagnostics harder is the fact that onconeural autoantibodies rare take place in patients with lymphomas unless anti-Tr and anti-mGluR1 in patients with limbic encephalitis or paraneoplastic cerebellar degeneration. There are two case reports about patients with PNS in onset of Hodgkin lymphoma in article.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2219
Author(s):  
Patrizia Guidi ◽  
Margherita Bernardeschi ◽  
Mara Palumbo ◽  
Vittoria Scarcelli ◽  
Massimo Genovese ◽  
...  

Zinc environmental levels are increasing due to human activities, posing a threat to ecosystems and human health. Therefore, new tools able to remediate Zn contamination in freshwater are highly recommended. Specimens of Dreissena polymorpha (zebra mussel) were exposed for 48 h and 7 days to a wide range of ZnCl2 nominal concentrations (1–10–50–100 mg/L), including those environmentally relevant. Cellulose-based nanosponges (CNS) were also tested to assess their safety and suitability for Zn removal from freshwater. Zebra mussels were exposed to 50 mg/L ZnCl2 alone or incubated with 1.25 g/L of CNS (2 h) and then removed by filtration. The effect of Zn decontamination induced by CNS has been verified by the acute toxicity bioassay Microtox®. DNA primary damage was investigated by the Comet assay; micronuclei frequency and nuclear morphological alterations were assessed by Cytome assay in mussels’ haemocytes. The results confirmed the genotoxic effect of ZnCl2 in zebra mussel haemocytes at 48 h and 7-day exposure time. Zinc concentrations were measured in CNS, suggesting that cellulose-based nanosponges were able to remove Zn(II) by reducing its levels in exposure waters and soft tissues of D. polymorpha in agreement with the observed restoration of genetic damage exerted by zinc exposure alone.


Author(s):  
Jaber Al Jaberi ◽  
Badr S. Bageri ◽  
Abdulrauf R. Adebayo ◽  
Shirish Patil ◽  
Assad Barri ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 443
Author(s):  
Balázs Sonkodi ◽  
Rita Bardoni ◽  
László Hangody ◽  
Zsolt Radák ◽  
István Berkes

Anterior cruciate ligament injury occurs when the ligament fibers are stretched, partially torn, or completely torn. The authors propose a new injury mechanism for non-contact anterior cruciate ligament injury of the knee. Accordingly, non-contact anterior cruciate ligament injury could not happen without the acute compression microinjury of the entrapped peripheral proprioceptive sensory axons of the proximal tibia. This would occur under an acute stress response when concomitant microcracks-fractures in the proximal tibia evolve due to the same excessive and repetitive compression forces. The primary damage may occur during eccentric contractions of the acceleration and deceleration moments of strenuous or unaccustomed fatiguing exercise bouts. This primary damage is suggested to be an acute compression/crush axonopathy of the proprioceptive sensory neurons in the proximal tibia. As a result, impaired proprioception could lead to injury of the anterior cruciate ligament as a secondary damage, which is suggested to occur during the deceleration phase. Elevated prostaglandin E2, nitric oxide and glutamate may have a critical neuro-modulatory role in the damage signaling in this dichotomous neuronal injury hypothesis that could lead to mechano-energetic failure, lesion and a cascade of inflammatory events. The presynaptic modulation of the primary sensory axons by the fatigued and microdamaged proprioceptive sensory fibers in the proximal tibia induces the activation of N-methyl-D-aspartate receptors in the dorsal horn of the spinal cord, through a process that could have long term relevance due to its contribution to synaptic plasticity. Luteinizing hormone, through interleukin-1β, stimulates the nerve growth factor-tropomyosin receptor kinase A axis in the ovarian cells and promotes tropomyosin receptor kinase A and nerve growth factor gene expression and prostaglandin E2 release. This luteinizing hormone induced mechanism could further elevate prostaglandin E2 in excess of the levels generated by osteocytes, due to mechanical stress during strenuous athletic moments in the pre-ovulatory phase. This may explain why non-contact anterior cruciate ligament injury is at least three-times more prevalent among female athletes.


2021 ◽  
Vol 547 ◽  
pp. 152816
Author(s):  
Charlotte S. Becquart ◽  
Andrée De Backer ◽  
Pär Olsson ◽  
Christophe Domain

Sign in / Sign up

Export Citation Format

Share Document