Involvement of the Xanthophyll Cycle in Regulation of Cyclic Electron Flow around Photosystem II

1996 ◽  
Vol 51 (1-2) ◽  
pp. 47-52 ◽  
Author(s):  
W. I. Gruszecki ◽  
K. Strzałk ◽  
K.P. Bader ◽  
A. Radunz ◽  
G.H. Schmid

Abstract In our previous study (Gruszecki et al., 1995) we have postulated that the mechanism of cyclic electron transport around photosystem II, active under overexcitation of the photosynthetic apparatus by light is under control of the xanthophyll cycle. The combination of dif­ferent light quality and thylakoids having various levels of xanthophyll cycle pigments were applied to support this hypothesis. In the present work photosynthetic oxygen evolution from isolated tobacco chloroplasts was measured by means of mass spectrometry under conditions of high or low levels of violaxanthin, being transformed to zeaxanthin during dark incubation in an ascorbate containing buffer at pH 5.7. Analysis of oxygen evolution and of light-induced oxygen uptake indicate that the de-epoxidation of violaxanthin to zeaxanthin results in an increased cyclic electron transport around PS II, thus dimishing the vectorial electron flow from water. An effect similar to de-epoxidation was observed after incubation of thylakoid membranes with specific antibodies against violaxanthin.

1995 ◽  
Vol 50 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
W. I. Gruszecki ◽  
K. Strzałka ◽  
A. Radunz ◽  
J. Kruk ◽  
G. H. Schmid

Abstract Light-driven electron transport in liposome-bound photosystem II (PS-II) particles be­tween water and ferricyanide was monitored by bare platinum electrode oxymetry. The modi­fication of the experimental system with the exogenous quinones α-tocopherol quinone ( α-TQ) or plastoquinone (PQ) resulted in a pronounced effect on photosynthetic oxygen evolution. The presence of α-tocopherolquinone ( α-TQ) in PS-II samples decreased the rate of red light-induced oxygen evolution but increased the rate of green light-induced oxygen evolution. Blue light applied to the assay system in which oxygen evolution was saturated by red light resulted in a further increase of the oxygen signal. These findings are interpreted in terms of a cyclic electron transport around PS-II, regulated by an excitation state of β-carotene in the reaction centre of PS-II. A mechanism is postulated according to which energetic coupling of β-carotene in the reaction centre of PS-II and that of other antenna carotenoid pigments is regulated by the portion of the xanthophyll violaxanthin, which is under control of the xanthophyll cycle.


1997 ◽  
Vol 52 (11-12) ◽  
pp. 766-774 ◽  
Author(s):  
J. Kruk ◽  
K. Burda ◽  
A. Radunz ◽  
K. Strzałka ◽  
G. H. Schmid

Abstract α-Tocoquinone (α-TQ ) and α-tocopherol (α-TOC) which cannot substitute for plastoquinone-9 (PQ-A) as an electron acceptor from photosystem II (PS II), influence the oxygen evolution activity of thylakoid membranes under continuous illumination. In the presence of the herbicide DCMU and the protonophore FCCP which stimulate cyclic electron transport around PS II, α-TQ decreased oxygen evolution whereas α-TOC enhanced it. The effects are attributed to a stimulation or an inhibition of cyclic electron transport around PS II by α-TQ and α-TOC, respectively. Results of flash light experiments on PS II preparations show that both α-TQ and α-TOC increased the d-parameter which describes the transition probability from the S3- to the S0-state of the oxygen-evolving complex, although to a smaller extent when PQ-A is added alone to the preparations. The initial S-state distribution in darkadapted samples was changed only upon PQ-A addition and influenced neither by α-TQ nor by α-TO C supplementation. These effects indicate different kinds of interaction of PQ-A, α-TQ and α-TOC with the PS II components. α-TQ increased and α-TOC decreased the “total miss” parameter both in the presence or absence of PQ-A. A possible site of interaction of α-TQ and α-TO C with the cyclic electron transport around PS II is suggested.


1994 ◽  
Vol 72 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Ernesto Bernal-Morales ◽  
Alfonso Romo De Vivar ◽  
Bertha Sanchez ◽  
Martha Aguilar ◽  
Blas Lotina-Hennsen

The inhibition of ATP synthesis, proton uptake, and electron transport (basal, phosphorylating, and uncoupled) from water to methylviologen by ivalin (a naturally occurring sesquiterpene lactone in Zaluzania triloba and Iva microcephala) indicates that it acts as electron transport inhibitor. Since photosystem I and electron transport from DPC to QA were not affected, while the electron flow of uncoupled photosystem II from H2O to DAD and from water to silicomolybdate was inhibited, we concluded that the site of inhibition of ivalin is located at the oxygen evolution level. Key words: oxygen evolution, ivalin, photosynthesis, sesquiterpene lactone.


1980 ◽  
Vol 35 (3-4) ◽  
pp. 293-297 ◽  
Author(s):  
P. V. Sane ◽  
Udo Johanningmeier

Abstract Low concentrations (10 µM) of tetranitromethane inhibit noncyclic electron transport in spinach chloroplasts. A study of different partial electron transport reactions shows that tetranitromethane primarily interferes with the electron flow from water to PS II. At higher concentrations the oxidation of plastohydroquinone is also inhibited. Because diphenyl carbazide but not Mn2+ ions can donate electrons efficiently to PS II in the presence of tetranitromethane it is suggested that it blocks the donor side of PS II prior to donation of electrons by diphenyl carbazide. The pH dependence of the inhibition by this protein modifying reagent may indicate that a functional-SH group is essential for a protein, which mediates electron transport between the water splitting complex and the reaction center of PS II.


1997 ◽  
Vol 52 (3-4) ◽  
pp. 175-179 ◽  
Author(s):  
W. I. Gruszecki ◽  
K. Strzałka ◽  
A. Radunz ◽  
G. H. Schmid

Abstract Photosynthetic oxygen evolution from photosystem II particles was analyzed as consequence of a train of short (5 μs) flashes of different light quality and different intensities to study cyclic electron flow around photosystem II. Damped oscillations of the amplitudes of O2-evolution corresponding to a flash sequence were fitted numerically and analyzed in terms of a nonhomogeneous distribution of misses, represented by the probability parameter αi. Application of red light, known to promote cyclic electron flow around photosystem II (Gruszecki et al., 1995) results in a considerable increase of all αi, indicating that at the molecular level the misses may be interpreted as resulting from a competition for the reduction of oxidized P680 between cyclic electron flow and the electron flow coming from the water splitting enzyme. In accordance with previous findings, application of light flashes of the spectrum covering the absorption region of carotenoids resulted in an inhibition of cyclic electron flow and a pronounced decrease of the level of the miss parameter. Possible molecular mechanisms for the activity control of this cyclic electron transport around photosystem II by carotenoids are discussed.


1975 ◽  
Vol 30 (7-8) ◽  
pp. 489-498 ◽  
Author(s):  
Christian Holzapfel ◽  
Robert Bauer

Abstract A computer model describing the “Z-scheme” of photosynthetic electron transport in terms of reduction and oxydation of coupled redox pools was built up. Starting from a certain initial state corresponding to the dark adapted state of the photosynthetic system the reduction and reoxidation levels of the pools were calculated during adaptation of the system to a steady state in the light. The changes of calculated redox levels were compared with experimental results of fluorescence and oxygen evolution induction curves. It is shown that the transients in prompt fluorescence and oxygen evolution can be described by reduction and reoxidation of the primary electron acceptor pool and the electron donor pool of photosystem II due to reduction and oxidation of the other pools during adaptation to light. The first depression D in the fluorescence induction curve is explained by the existence of a redox pool X between the primary electron acceptor pool Q of photosystem II and plastoquinone. It is shown that DCMU blocks the electron flow between Q and X. Furthermore, it is shown that the inhibitor DBMIB probably not only blocks the electron flow but also causes a successive disconnection of the plastoquinone pool from the electron transport chain.


1976 ◽  
Vol 31 (9-10) ◽  
pp. 594-600 ◽  
Author(s):  
Georg H. Schmid ◽  
Gernot Renger ◽  
Michael Gläser ◽  
Friederike Koenig ◽  
Alfons Radunz ◽  
...  

Abstract As was described previously, an antiserum to polypeptide 11000 inhibited photosynthetic elec­tron transport on the oxygen evolving side of photosystem II. The effect of the antiserum on chloro­plasts from two tobacco mutants also clearly showed that the inhibition site is on the photosystem II-side of the electron transport chain. One of the two tobacco mutants lades the oxygen evolving capacity but exhibits some electron transport with tetramethyl benzidine, an artificial donor to PS II. In this mutant electron transport was barely inhibited. The effect of the antiserum on the primary photoevents showed that the initial amplitude of the absorption change of chlorophyll an at 690 nm and that of the primary electron acceptor X320 at 334 nm both diminished in the presence of the antiserum. Both signals were restored upon addition of diphenylcarbazide another artificial donor to photosystem II. Comparison of the degree of inhibition on the amplitudes of the fast and slow components of the 690 nm absorption change with the manometrically measured inhibition of electron transport shows that besides a full inactivation of a part of the reaction centers of photosystem II another part apparently mediates a fast cyclic electron flow around photosystem II as reported by Renger and Wolff earlier for tris-treated chloroplasts. Moreover, the antiserum affects the low temperature fluorescence in a way which is opposite to Murata’s effect of the Mg2+ -ion induced inhibition of energy spill-over from photosystem II to photosystem I. The antiserum under the condition in which the Hill reaction is inhibited lowered the 686 nm emission and enhanced the 732 nm emission which indicates an enhanced energy spill-over to photosystem I.


1993 ◽  
Vol 48 (3-4) ◽  
pp. 163-167
Author(s):  
Koichi Yoneyama ◽  
Yoshihiro Nakajima ◽  
Masaru Ogasawara ◽  
Hitoshi Kuramochi ◽  
Makoto Konnai ◽  
...  

Abstract Through the studies on structure-activity relationships of 5-acyl-3-(1-aminoalkylidene)-4-hydroxy-2 H-pyran-2,6(3 H)-dione derivatives in photosystem II (PS II) inhibition, overall lipophilicity of the molecule was found to be a major determinant for the activity. In the substituted N -benzyl derivatives, not only the lipophilicity but also the electronic and steric characters of the substituents greatly affected the activity. Their mode of PS II inhibition seemed to be similar to that of DCMU , whereas pyran-enamine derivatives needed to be highly lipophilic to block the electron transport in thylakoid membranes, which in turn diminished the permeability through biomembranes.


1984 ◽  
Vol 39 (5) ◽  
pp. 374-377 ◽  
Author(s):  
J. J. S. van Rensen

The reactivation of the Hill reaction in CO2-depleted broken chloroplasts by various concentrations of bicarbonate was measured in the absence and in the presence of photosystem II herbicides. It appears that these herbicides decrease the apparent affinity of the thylakoid membrane for bicarbonate. Different characteristics of bicarbonate binding were observed in chloroplasts of triazine-resistant Amaranthus hybridus compared to the triazine-sensitive biotype. It is concluded that photosystem II herbicides, bicarbonate and formate interact with each other in their binding to the Qв-protein and their interference with photosynthetic electron transport.


Sign in / Sign up

Export Citation Format

Share Document