Proglacial succession of biological soil crusts and vascular plants: biotic interactions in the High Arctic

2006 ◽  
Vol 84 (11) ◽  
pp. 1714-1731 ◽  
Author(s):  
Katie Breen ◽  
Esther Lévesque

To evaluate the hypothesis that biological soil crusts facilitate the establishment and maintenance of vascular plants during succession, we studied the distribution patterns of crusts and vascular plants along a High Arctic glacier foreland and compared the success of plants growing in and out of crusted substrate. Multivariate analyses determined that distance from the glacier and crust cover were the most important variables, explaining 11% and 9% of the variance in the vegetation data, respectively. Surfaces colonized by biological soil crusts generally supported higher plant densities and showed positive associations with the most dominant, long-lived plant species such as Saxifraga oppositifolia L., Salix arctica Pall., and Dryas integrifolia Vahl. Crusts facilitate plant establishment and growth in early and midsuccession but may compete for available resources further along the chronosequence. This study recognizes subtle direct influences of crust on vegetation density but also draws attention to a much larger overall positive effect on community structure. Succession on this foreland proceeds via a “directional-replacement” model and supports a well-developed community of biological soil crusts and vascular plants with greater species richness, cover, and density compared with other glacier foreland vegetation communities previously investigated on Ellesmere Island, Nunavut.

2010 ◽  
Vol 186 (2) ◽  
pp. 451-460 ◽  
Author(s):  
Shinpei Yoshitake ◽  
Masaki Uchida ◽  
Hiroshi Koizumi ◽  
Hiroshi Kanda ◽  
Takayuki Nakatsubo

2016 ◽  
Vol 98 ◽  
pp. 92-102 ◽  
Author(s):  
Namyi Chae ◽  
Hojeong Kang ◽  
Yongwon Kim ◽  
Soon Gyu Hong ◽  
Bang Yong Lee ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e71489 ◽  
Author(s):  
Blaire Steven ◽  
Marie Lionard ◽  
Cheryl R. Kuske ◽  
Warwick F. Vincent

Author(s):  
Matthew A. Bowker ◽  
Jayne Belnap ◽  
Burkhard Büdel ◽  
Christophe Sannier ◽  
Nicole Pietrasiak ◽  
...  

2008 ◽  
Vol 56 (3) ◽  
pp. 246 ◽  
Author(s):  
A. Briggs ◽  
J. W. Morgan

Biological soil crusts are common in many arid and semi-arid regions of the world, including Australia. Crusts alter soil factors including water availability, nutrient content and erosion susceptibility and are likely to both directly and indirectly affect vascular plants. Despite emerging recognition as important ecosystem components, these soil communities are understudied. We describe the morphological composition and distribution of lichens and bryophytes in soil crusts from the northern riverine plains, Victoria, in relation to landscape setting and vegetation type. Sampling was conducted across a geomorphological gradient in three different vegetation types (Callitris glaucophylla woodland, Eucalyptus woodland and red-soil native tussock grassland) with an annual rainfall of ~400 mm. Mean cover of biological soil crust for the study area was 18%, with mosses and crustose and foliose lichens the most conspicuous components. Total cover of biological soil crust increased as bare ground and vascular plant cover increased, and litter cover decreased. As a consequence, cover and morphological composition of biological soil crusts differed in the three vegetation types, with mosses responding differently from lichens and liverworts in relation to the cover of litter, bare ground and vascular plants. Hence, biological soil crusts were a conspicuous component in vegetation where they had not previously been described and may play an important role in regulating the structure and function of these plant communities.


2021 ◽  
Vol 13 (16) ◽  
pp. 3093
Author(s):  
Jakob Rieser ◽  
Maik Veste ◽  
Michael Thiel ◽  
Sarah Schönbrodt-Stitt

Biological soil crusts (BSCs) are thin microbiological vegetation layers that naturally develop in unfavorable higher plant conditions (i.e., low precipitation rates and high temperatures) in global drylands. They consist of poikilohydric organisms capable of adjusting their metabolic activities depending on the water availability. However, they, and with them, their ecosystem functions, are endangered by climate change and land-use intensification. Remote sensing (RS)-based studies estimated the BSC cover in global drylands through various multispectral indices, and few of them correlated the BSCs’ activity response to rainfall. However, the allocation of BSCs is not limited to drylands only as there are areas beyond where smaller patches have developed under intense human impact and frequent disturbance. Yet, those areas were not addressed in RS-based studies, raising the question of whether the methods developed in extensive drylands can be transferred easily. Our temperate climate study area, the ‘Lieberoser Heide’ in northeastern Germany, is home to the country’s largest BSC-covered area. We applied a Random Forest (RF) classification model incorporating multispectral Sentinel-2 (S2) data, indices derived from them, and topographic information to spatiotemporally map the BSC cover for the first time in Central Europe. We further monitored the BSC response to rainfall events over a period of around five years (June 2015 to end of December 2020). Therefore, we combined datasets of gridded NDVI as a measure of photosynthetic activity with daily precipitation data and conducted a change detection analysis. With an overall accuracy of 98.9%, our classification proved satisfactory. Detected changes in BSC activity between dry and wet conditions were found to be significant. Our study emphasizes a high transferability of established methods from extensive drylands to BSC-covered areas in the temperate climate. Therefore, we consider our study to provide essential impulses so that RS-based biocrust mapping in the future will be applied beyond the global drylands.


Sign in / Sign up

Export Citation Format

Share Document