northeastern germany
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 36)

H-INDEX

21
(FIVE YEARS 1)

Healthcare ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Norbert Hosten ◽  
Robin Bülow ◽  
Henry Völzke ◽  
Martin Domin ◽  
Carsten Oliver Schmidt ◽  
...  

The Study of Health in Pomerania (SHIP), a population-based study from a rural state in northeastern Germany with a relatively poor life expectancy, supplemented its comprehensive examination program in 2008 with whole-body MR imaging at 1.5 T (SHIP-MR). We reviewed more than 100 publications that used the SHIP-MR data and analyzed which sequences already produced fruitful scientific outputs and which manuscripts have been referenced frequently. Upon reviewing the publications about imaging sequences, those that used T1-weighted structured imaging of the brain and a gradient-echo sequence for R2* mapping obtained the highest scientific output; regarding specific body parts examined, most scientific publications focused on MR sequences involving the brain and the (upper) abdomen. We conclude that population-based MR imaging in cohort studies should define more precise goals when allocating imaging time. In addition, quality control measures might include recording the number and impact of published work, preferably on a bi-annual basis and starting 2 years after initiation of the study. Structured teaching courses may enhance the desired output in areas that appear underrepresented.


2021 ◽  
Vol 25 (12) ◽  
pp. 6547-6566
Author(s):  
Daniel Rasche ◽  
Markus Köhli ◽  
Martin Schrön ◽  
Theresa Blume ◽  
Andreas Güntner

Abstract. Cosmic-ray neutron sensing (CRNS) allows for non-invasive soil moisture estimations at the field scale. The derivation of soil moisture generally relies on secondary cosmic-ray neutrons in the epithermal to fast energy ranges. Most approaches and processing techniques for observed neutron intensities are based on the assumption of homogeneous site conditions or of soil moisture patterns with correlation lengths shorter than the measurement footprint of the neutron detector. However, in view of the non-linear relationship between neutron intensities and soil moisture, it is questionable whether these assumptions are applicable. In this study, we investigated how a non-uniform soil moisture distribution within the footprint impacts the CRNS soil moisture estimation and how the combined use of epithermal and thermal neutrons can be advantageous in this case. Thermal neutrons have lower energies and a substantially smaller measurement footprint around the sensor than epithermal neutrons. Analyses using the URANOS (Ultra RApid Neutron-Only Simulation) Monte Carlo simulations to investigate the measurement footprint dynamics at a study site in northeastern Germany revealed that the thermal footprint mainly covers mineral soils in the near-field to the sensor while the epithermal footprint also covers large areas with organic soils. We found that either combining the observed thermal and epithermal neutron intensities by a rescaling method developed in this study or adjusting all parameters of the transfer function leads to an improved calibration against the reference soil moisture measurements in the near-field compared to the standard approach and using epithermal neutrons alone. We also found that the relationship between thermal and epithermal neutrons provided an indicator for footprint heterogeneity. We, therefore, suggest that the combined use of thermal and epithermal neutrons offers the potential of a spatial disaggregation of the measurement footprint in terms of near- and far-field soil moisture dynamics.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2463
Author(s):  
Helge Kampen ◽  
Birke Andrea Tews ◽  
Doreen Werner

Mosquitoes collected from mid-December 2020 to early March 2021 from hibernacula in northeastern Germany, a region of West Nile virus (WNV) activity since 2018, were examined for WNV-RNA. Among the 6101 mosquitoes tested in 722 pools of up to 12 specimens, one pool of 10 Culex pipiens complex mosquitoes collected in early March 2021 in the cellar of a medieval castle in Rosslau, federal state of Saxony-Anhalt, tested positive. Subsequent mosquito DNA analysis produced Culex pipiens biotype pipiens. The pool homogenate remaining after nucleic acid extraction failed to grow the virus on Vero and C6/36 cells. Sequencing of the viral NS2B-NS3 coding region, however, demonstrated high homology with virus strains previously collected in Germany, e.g., from humans, birds, and mosquitoes, which have been designated the East German WNV clade. The finding confirms the expectation that WNV can overwinter in mosquitoes in Germany, facilitating an early start to the natural transmission season in the subsequent year. On the other hand, the calculated low infection prevalence of 0.016–0.20%, depending on whether one or twelve of the mosquitoes in the positive pool was/were infected, indicates a slow epidemic progress and mirrors the still-hypoendemic situation in Germany. In any case, local overwintering of the virus in mosquitoes suggests its long-term persistence and an enduring public health issue.


2021 ◽  
Vol 46 ◽  
pp. S628
Author(s):  
J. Bönisch ◽  
J. Schwerinske ◽  
L. Schindler ◽  
S. Tolay ◽  
F. Meyer ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2437
Author(s):  
Nora Vitow ◽  
Theresa Zicker ◽  
Akane Chiba ◽  
Anika Zacher ◽  
Bettina Eichler-Löbermann ◽  
...  

Legume catch crops can enhance soil fertility and promote the N and P supply of the subsequent main crop, especially with low mineral fertilizer use. However, the specific impact of catch crops on arbuscular mycorrhiza formation of the following main crop is unknown. Therefore, the impact of serradella (Ornithopus sativus) vs. bare fallow was tested on mycorrhiza formation, potential soil enzyme activities and plant-available P under subsequently grown barley (Hordeum vulgare) and different fertilization treatments (P-unfertilized—P0; triple superphosphate—TSP; compost—COM; combined—COM + TSP) in a long-term field experiment in northeastern Germany. Catch cropping significantly increased mycorrhiza formation of barley up to 14% compared to bare fallow. The impact of serradella on mycorrhiza formation exceeded that of the fertilization treatment. Serradella led to increased phosphodiesterase activities and decreased ß-glucosidase activities in soil. Plant availability of P was not significantly affected by serradella. These findings provide initial evidence that even serradella as a non-host crop of mycorrhizal fungi can promote the mycorrhiza formation of the subsequent crop and P mobilization in soil. We conclude that the prolonged vegetation cover of arable soils by the use of catch crops can promote P mobilization and transfer from P pools to the following main crops.


2021 ◽  
Author(s):  
Bernhard Aichner ◽  
David Dubbert ◽  
Christine Kiel ◽  
Katrin Kohnert ◽  
Igor Ogashawara ◽  
...  

Abstract. Water isotopes (δ2H and δ18O) were analyzed in samples collected in lakes associated to riverine systems in northeastern Germany throughout 2020. The dataset (Aichner et al., 2021) is derived from water samples collected at a) lake shores (sampled in March and July 2020); b) buoys which were temporarily installed in deep parts of the lake (sampled monthly from March to October 2020); c) multiple spatially distributed spots in four selected lakes (sampled in September 2020); d) the outflow of Müggelsee (sampled biweekly from March 2020 to January 2021). At shores, water was sampled with a pipette from 40–60 cm below water surface and directly transferred into a measurement vial, while at deeper parts of the lake a Limnos water sampler was used to obtain samples from 1 m below surface. Isotope analysis was conducted at IGB Berlin, using a Picarro L2130-i cavity ring-down spectrometer. The data give information about the seasonal isotope amplitude in the sampled lakes and about spatial isotope patterns in different branches of the associated riverine systems.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2601
Author(s):  
Holger Rupp ◽  
Nadine Tauchnitz ◽  
Ralph Meissner

As a result of global climate change, heavy rainfall events and dry periods are increasingly occurring in Germany, with consequences for the water and solute balance of soils to be expected. The effects of climate change on nitrogen and carbon leaching were investigated using 21 non-weighable manually filled lysimeters of the UFZ lysimeter facility Falkenberg, which have been managed since 1991 according to the principles of the best management practices and organic farming. Based on a 29-year dataset (precipitation, evaporation, leachate, nitrate and dissolved organic carbon concentrations), the lysimeter years 1995/96, 2018/19, and 2003/04 were identified as extremely dry years. Under the climatic conditions in northeastern Germany, seepage fluxes were disrupted in these dry years. The reoccurrence of seepage was associated with exceptionally high nitrogen concentrations and leaching losses, which exceeded the current drinking water limits by many times and may result in a significant risk to water quality. In contrast, increased DOC leaching losses occurred primarily as a result of increased seepage fluxes.


Author(s):  
Matthias Tamminga ◽  
Elena Hengstmann ◽  
Ann-Kristin Deuke ◽  
Elke Kerstin Fischer

AbstractThe widespread presence of microplastics in multiple environmental compartments has largely been demonstrated. Assessing the ecological risk that microplastics pose is, at the present stage, hindered due to methodical differences. Moreover, different methods hamper meaningful comparisons between studies and data on microplastics <300 μm is scarce. Therefore, we focused on microplastics >20 μm in freshwater and sampling-related aspects in this concern. Sampling was conducted between 2018 and 2020 in the Tollense catchment in northeastern Germany and was carried out by in situ pump filtration. Two different sampling systems (cutoff sizes 20 μm and 63 μm) were applied to filter water volumes of 0.075–1.836 m3. Retained particles were analyzed by a combination of Nile red staining and micro-Raman spectroscopy. Thereby, we found microplastic concentrations between 123 and 1728 particles m−3 using the 63-μm cut-off size and between 1357 and 2146 particles m−3 using the 20-μm cut-off size. Local hydrodynamics (discharge and flow velocity) and land cover are likely influencing the observed microplastic concentrations and fluxes. The variability between both sampling systems cannot fully be explained by the different mesh sizes used. We argue that differentiation between a theoretical cut-off size (finest mesh) and a factual cut-off size (reliable quantification) can help to understand sampling related differences between studies.


2021 ◽  
Vol 13 (16) ◽  
pp. 3093
Author(s):  
Jakob Rieser ◽  
Maik Veste ◽  
Michael Thiel ◽  
Sarah Schönbrodt-Stitt

Biological soil crusts (BSCs) are thin microbiological vegetation layers that naturally develop in unfavorable higher plant conditions (i.e., low precipitation rates and high temperatures) in global drylands. They consist of poikilohydric organisms capable of adjusting their metabolic activities depending on the water availability. However, they, and with them, their ecosystem functions, are endangered by climate change and land-use intensification. Remote sensing (RS)-based studies estimated the BSC cover in global drylands through various multispectral indices, and few of them correlated the BSCs’ activity response to rainfall. However, the allocation of BSCs is not limited to drylands only as there are areas beyond where smaller patches have developed under intense human impact and frequent disturbance. Yet, those areas were not addressed in RS-based studies, raising the question of whether the methods developed in extensive drylands can be transferred easily. Our temperate climate study area, the ‘Lieberoser Heide’ in northeastern Germany, is home to the country’s largest BSC-covered area. We applied a Random Forest (RF) classification model incorporating multispectral Sentinel-2 (S2) data, indices derived from them, and topographic information to spatiotemporally map the BSC cover for the first time in Central Europe. We further monitored the BSC response to rainfall events over a period of around five years (June 2015 to end of December 2020). Therefore, we combined datasets of gridded NDVI as a measure of photosynthetic activity with daily precipitation data and conducted a change detection analysis. With an overall accuracy of 98.9%, our classification proved satisfactory. Detected changes in BSC activity between dry and wet conditions were found to be significant. Our study emphasizes a high transferability of established methods from extensive drylands to BSC-covered areas in the temperate climate. Therefore, we consider our study to provide essential impulses so that RS-based biocrust mapping in the future will be applied beyond the global drylands.


Sign in / Sign up

Export Citation Format

Share Document