STUDIES ON FERTILITY AND LATE BLIGHT RESISTANCE IN SOLANUM BULBOCASTANUM DUN. IN MEXICO

1959 ◽  
Vol 37 (1) ◽  
pp. 41-49 ◽  
Author(s):  
K. M. Graham ◽  
J. S. Niederhauser ◽  
Leopoldo Servin

Solanum balbocastanum Dun. was collected extensively throughout its range in Mexico and Guatemala. Experimental self- and cross-pollinations showed that the species is highly self-sterile and consists of cross-sterile and cross-fertile individuals. Self-sterility may be due to the presence of incompatibility factors or to triploidy. Authentic hybrids were produced between S. bulbocastanum and S. trifidum Correll, and between S. bulbocastanum and S. pinnatisectum Dun.After inoculation with race 1.2.3.4 of Phytophthora infestans three types of reaction were observed among 1148 seedlings of S. bulbocastanum: immunity with no perceptible lesions, resistance expressed by non-sporulating lesions of the hypersensitive type, and susceptibility indicated by large sporulating necrotic lesions. Seedlings resistant to an isolate of race 1.2.3.4 of Canadian origin did not always show the same level of resistance to a Mexican isolate of the same race. Varying degrees of field resistance were observed among seedling plants, while tuber-propagated plants were generally field immune. Solanum bulbocastanum is considered a mixture of resistant and susceptible genotypes.

2021 ◽  
Vol 57 (No. 4) ◽  
pp. 279-288
Author(s):  
Jose Ignacio Ruiz de Galarreta ◽  
Alba Alvarez-Morezuelas ◽  
Nestor Alor ◽  
Leire Barandalla ◽  
Enrique Ritter

The oomycete Phytophthora infestans is responsible for the disease known as late blight in potato and tomato. It is the plant pathogen that has caused the greatest impact on humankind so far and, despite all the studies that have been made, it remains the most important in this crop. In Spain during the last years a greater severity of the disease has been observed in both, potato and tomato, probably due to genetic changes in pathogen populations described recently. The aim of this study was the characterization of the physiological strains of 52 isolates of P. infestans obtained in different potato-growing areas in Spain. For this purpose, inoculations on detached leaves were performed in order to determine compatibility or incompatibility reactions. A total of 17 physiological races were found. The less frequent virulence factors were Avr5 and Avr8. By studying the epidemiology of the pathogen, a specific breeding program for late blight resistance can be implemented.


PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10536 ◽  
Author(s):  
Dennis A. Halterman ◽  
Yu Chen ◽  
Jiraphan Sopee ◽  
Julio Berduo-Sandoval ◽  
Amilcar Sánchez-Pérez

Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 339-343 ◽  
Author(s):  
Dennis A. Halterman ◽  
Lara Colton Kramer ◽  
Susan Wielgus ◽  
Jiming Jiang

Late blight of potato, caused by Phytophthora infestans, is one of the most devastating diseases of potato. A major late blight resistance gene, called RB, previously was identified in the wild potato species Solanum bulbocastanum through map-based cloning. The full-length gene coding sequence, including the open reading frame and promoter, has been integrated into cultivated potato (S. tuberosum) using Agrobacterium-mediated transformation. RB-containing transgenic plants were challenged with P. infestans under optimal late blight conditions in greenhouse experiments. All transgenic lines containing RB exhibited strong foliar resistance. Field-grown transgenic tubers also were tested for resistance to P. infestans. In contrast to the foliar resistance phenotype, RB-containing tubers did not exhibit increased resistance. Two years of field trials were used to ascertain whether the presence of RB had any effect on tuber yield. We were unable to detect any significant effect on tuber size or yield after addition of the resistance gene to several S. tuberosum cultivars.


2005 ◽  
Vol 44 (2) ◽  
pp. 208-222 ◽  
Author(s):  
Edwin A.G. Vossen ◽  
Jack Gros ◽  
Anne Sikkema ◽  
Marielle Muskens ◽  
Doret Wouters ◽  
...  

2005 ◽  
Vol 18 (7) ◽  
pp. 722-729 ◽  
Author(s):  
Tae-Ho Park ◽  
Jack Gros ◽  
Anne Sikkema ◽  
Vivianne G. A. A. Vleeshouwers ◽  
Marielle Muskens ◽  
...  

Late blight, caused by Phytophthora infestans, is one of the most devastating diseases in cultivated potato. Breeding of new potato cultivars with high levels of resistance to P. infestans is considered the most durable strategy for future potato cultivation. In this study, we report the identification of a new late-blight resistance (R) locus from the wild potato species Solanum bulbocastanum. Using several different approaches, a high-resolution genetic map of the new locus was generated, delimiting Rpi-blb3 to a 0.93 cM interval on chromosome 4. One amplification fragment length polymorphism marker was identified that cosegregated in 1,396 progeny plants of an intraspecific mapping population with Rpi-blb3. For comparative genomics purposes, markers linked to Rpi-blb3 were tested in mapping populations used to map the three other late-blight R loci Rpi-abpt, R2, and R2-like also to chromosome 4. Marker order and allelic conservation suggest that Rpi-blb3, Rpiabpt, R2, and R2-like reside in the same R gene cluster on chromosome 4 and likely belong to the same gene family. Our findings provide novel insights in the evolution of R gene clusters conferring late-blight resistance in Solanum spp.


2007 ◽  
Vol 132 (6) ◽  
pp. 783-789 ◽  
Author(s):  
Joseph C. Kuhl ◽  
Kelly Zarka ◽  
Joseph Coombs ◽  
William W. Kirk ◽  
David S. Douches

Late blight of potato (Solanum tuberosum L.), incited by Phytophthora infestans (Mont.) de Bary, is a devastating disease affecting tuber yield and storage. Recent work has isolated a resistance gene, RB, from the wild species Solanum bulbocastanum Dun. Earlier work in Toluca, Mexico, observed significant levels of field resistance under intense disease pressure in a somatic hybrid containing RB. In this study, five transgenic RB lines were recovered from the late blight susceptible line MSE149-5Y, from the Michigan State University (MSU) potato breeding program. Transgenic lines were molecularly characterized for the RB transgene, RB transcript, and insertion number of the kanamycin resistance gene NPTII. Transgenic lines and the parent line were evaluated for resistance in field and laboratory tests. Molecular characterization alone did not predict which lines were resistant. Three of the RB transformed MSE149-5Y lines showed increased resistance under field conditions at MSU and increased resistance in detached leaf evaluations using multiple isolates individually (US-1, US-1.7, US-8, US-10, and US-14). Transfer of RB into late blight susceptible and resistant lines could provide increased protection to potato late blight. The use of the RB gene for transformation in this way creates a partially cisgenic event in potato because the gene's native promoter and terminator are used. This type of transformation provides a chance to generate greater public acceptance of engineered approaches to trait introgression in food crops.


Plant Disease ◽  
2021 ◽  
Author(s):  
Weiya Xue ◽  
Kathleen G. Haynes ◽  
Xinshun Qu

Resistance to late blight, caused by Phytophthora infestans clonal lineage US-23, in 217 old and modern potato cultivars was evaluated in field trials in 2016 and 2017 in Pennsylvania. Significant differences in resistance were found among these cultivars (P < 0.0001). Significant interaction between cultivars and environments was found (P < 0.0001). The values of relative area under the disease progress curve ranged from 0 to 0.5841 in 2016 and from 0 to 0.5469 in 2017. Broad-sense heritability of late blight resistance was estimated to be 0.91 with a 95% confidence interval of 0.88 to 0.93. Cluster analysis classified the cultivars into 5 groups: resistant, moderately resistant, intermediate, moderately susceptible, and susceptible. Thirty cultivars showing resistance and 32 cultivars showing moderate resistance were identified. The 217 cultivars were also evaluated for foliar maturity, tuber yield and resistance to early blight, caused by Alternaria solani. A few cultivars with late blight resistance independent of late maturity were found. Late blight resistance and early blight resistance were positively correlated, and 17 cultivars possessed resistance to both diseases. Yield tradeoff associated with late blight resistance was not observed among the cultivars in the absence of disease pressure.


2017 ◽  
Vol 107 (6) ◽  
pp. 740-748 ◽  
Author(s):  
Emil Stefańczyk ◽  
Sylwester Sobkowiak ◽  
Marta Brylińska ◽  
Jadwiga Śliwka

This study describes late blight resistance of potato breeding lines resulting from crosses between cultivar ‘Sárpo Mira’ and Rpi-phu1 gene donors. The progeny is investigated for the presence of Rpi-Smira1 and Rpi-phu1 resistance (R) genes. Interestingly, in detached-leaflet tests, plants with both R genes withstood the infection of the Phytophthora infestans isolate virulent to each gene separately, due to either interaction of these genes or the presence of additional resistance loci. The interaction was studied further in three chosen breeding lines on the transcriptional level. The Rpi-phu1 expression, measured over 5 days, revealed different patterns depending on the outcome of the interaction with P. infestans: it increased in infected plants whereas it remained low and stable when infection was unsuccessful. The expression patterns of P. infestans effectors Avr-vnt1, AvrSmira1, and Avr8, recognized by the Rpi-phu1, Rpi-Smira1, and Rpi-Smira2 genes, respectively, were evaluated in the same experimental setup. This is the first report that the Avr-vnt1 effector expression is not switched off permanently in virulent isolates to avoid recognition by an R protein but can reappear in a postbiotrophic phase and is present constantly when infecting plants without the corresponding R gene. Both a plant and a pathogen can react to the other interacting side by changing the transcript accumulation of R genes or effectors.


2015 ◽  
Vol 14 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Aditi Thakur ◽  
Suman Sanju ◽  
Sundaresha Siddappa ◽  
Nidhi Srivastava ◽  
Pradeep K. Shukla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document