FINE STRUCTURAL CHANGES IN ISOLATED MITOCHONDRIA OF HEALTHY AND VIRUS-INFECTED VICIA FABA L.

1966 ◽  
Vol 44 (8) ◽  
pp. 1017-1024 ◽  
Author(s):  
M. Weintraub ◽  
H. W. J. Ragetli ◽  
V. T. John

Mitochondria within leaf cells of healthy broad bean had the normal appearance of plant mitochondria, while within cells infected with bean yellow mosaic virus they had matrices that were electron-opaque and cristae that were swollen and angular. However, upon isolation, mitochondria from healthy broad bean cells became indistinguishable from either mitochondria in situ in virus-infected cells, or from mitochondria in vitro isolated from virus-infected cells. Cristae of the isolated mitochondria were greatly inflated, while the matrices were reduced to a thin network in which spherical substructural components, 130–140 A in diameter, were visible. These changes in isolated healthy mitochondria could not be prevented by the use of tannin inhibitors. No significant differences were found in the succinoxidase activities of the isolated healthy and infected mitochondria.

2013 ◽  
Vol 24 ◽  
pp. S121
Author(s):  
Farzad Nofouzi ◽  
Mohsen Mirzapour ◽  
Sam Mokhtarzadeh ◽  
Khalid Mahmood Khawar

2018 ◽  
Vol 9 (4) ◽  
pp. 2051-2069 ◽  
Author(s):  
Faiza Mejri ◽  
Slimen Selmi ◽  
Alice Martins ◽  
Haifa benkhoud ◽  
Tarek Baati ◽  
...  

Broad bean pods have been proven to be a functional food with promising in vitro and in vivo biological activities.


2009 ◽  
Vol 84 (1) ◽  
pp. 387-396 ◽  
Author(s):  
Haitao Guo ◽  
Richeng Mao ◽  
Timothy M. Block ◽  
Ju-Tao Guo

ABSTRACT Removal of genome-bound viral DNA polymerase ought to be an essential step in the formation of hepadnavirus covalently closed circular DNA (cccDNA). We previously demonstrated that deproteinized (DP) relaxed circular DNA (rcDNA) of hepatitis B virus (HBV) existed in both the cytoplasm and nuclei of infected cells and the vast majority of cytoplasmic DP rcDNA was associated with DNase I-permeable nucleocapsids. In our efforts to investigate the role of the cytoplasmic DP rcDNA in cccDNA formation, we demonstrated that rcDNA deproteinization could occur in an endogenous DNA polymerase reaction with either virion-derived or intracellular nucleocapsids. As observed in the cytoplasm of virally infected cells, in vitro deproteinization requires the maturation of plus-strand DNA and results in changes in nucleocapsid structure that render the DP rcDNA susceptible to DNase I digestion. Remarkably, we found that the cytoplasmic DP rcDNA-containing nucleocapsids could be selectively immunoprecipitated with an antibody against the carboxyl-terminal peptide of HBV core protein and are associated with cellular nuclear transport receptors karyopherin-α and -β. Moreover, transfection of small interfering RNA targeting karyopherin-β1 mRNA or expression of a dominant-negative karyopherin-β1 in a stable cell line supporting HBV replication resulted in the accumulation of DP rcDNA in cytoplasm and reduction of nuclear DP rcDNA and cccDNA. Our results thus favor a hypothesis that completion of plus-strand DNA synthesis triggers the genomic DNA deproteinization and structural changes of nucleocapsids, which leads to the exposure of nuclear localization signals in the C terminus of core protein and mediates the nuclear transportation of DP rcDNA via interaction with karyopherin-α and -β.


Author(s):  
Konrad Rydzynski

It was shown in vitro-on isolated mitochondria as well as on mitochondria from Ehrlich Ascites Tumor Cells-that adding of 2,4-dinitrophe- nol /DNP/ to the incubation medium leads to characteristic structural changes coinciding with adequate respiratory states. The aim of this study is to investigate, at the ultrastructural level, to what extent it would be possible to modify the configurational states in vivo on the model of the choroid plexus of rats' brain lateral ventricles. It produces the cerebrospinal fluid /CSP/, and is responsible for its composition through the active secretion of certain ions. ATP is indispensable in the process. It has been proved that DNP penetrates the plexus' epithelium and probably inhibits the active processes there by means of uncoupling the oxidative phosphorylation in the mitochondria.Material and MethodsWistar rats, weighed 280-330 g,were anesthetized with Nembutal /30 mg/kg i.p./ and fortal /1 mg/kg i.m./, then placed in stereotactic apparatus for ventriculo-cisternal perfusion.


2003 ◽  
Vol 77 (15) ◽  
pp. 8512-8523 ◽  
Author(s):  
Camilla Krogerus ◽  
Denise Egger ◽  
Olga Samuilova ◽  
Timo Hyypiä ◽  
Kurt Bienz

ABSTRACT The parechoviruses differ in many biological properties from other picornaviruses, and their replication strategy is largely unknown. In order to identify the viral RNA replication complex in human parechovirus type 1 (HPEV-1)-infected cells, we located viral protein and RNA in correlation to virus-induced membrane alterations. Structural changes in the infected cells included a disintegrated Golgi apparatus and disorganized, dilated endoplasmic reticulum (ER) which had lost its ribosomes. Viral plus-strand RNA, located by electron microscopic (EM) in situ hybridization, and the viral protein 2C, located by EM immunocytochemistry were found on clusters of small vesicles. Nascent viral RNA, visualized by 5-bromo-UTP incorporation, localized to compartments which were immunocytochemically found to contain the viral protein 2C and the trans-Golgi marker 1,4-galactosyltransferase. Protein 2C was immunodetected additionally on altered ER membranes which displayed a complex network-like structure devoid of cytoskeletal elements and with no apparent involvement in viral RNA replication. This protein also exhibited membrane binding properties in an in vitro assay. Our data suggest that the HPEV-1 replication complex is built up from vesicles carrying a Golgi marker and forming a structure different from that of replication complexes induced by other picornaviruses.


2021 ◽  
Author(s):  
Ruben N. Pinto

Significant functional/structural changes of red blood cells (RBCs) have been documented during its in vitro storage. Collectively termed as RBC storage lesions, changes include an increase in RBC oxygen saturation (SO2) and an increase in irreversibly damaged RBCs (spheroechinocytes). In this work, novel optical techniques are presented for determining the spheroechinocyte population as a function of storage time via automated image flow cytometry (IFC) morphology characterization, and the acquisition of RBC SO2 via an in situ photoacoustic (PA) method. Blood gas analysis (BGA) was used as the gold standard SO2 measure. Over the lifespan of seven blood bags, the IFC spheroechinocyte population – PA SO2 correlation was found to be strong (0.600.95) shows high potential for in situ monitoring of RBC storage lesions.


1985 ◽  
Vol 101 (3) ◽  
pp. 924-941 ◽  
Author(s):  
U W Goodenough ◽  
W S Adair ◽  
P Collin-Osdoby ◽  
J E Heuser

Using the quick-freeze, deep-etch technique, we compare the structure of the cane-shaped plus and minus sexual agglutinin molecules purified from gametes of Chlamydomonas reinhardi. We also describe the structure of three additional gamete-specific fibrillar molecules, called short canes, loops, and crescents, which are structurally related to the agglutinins. Four non-agglutinating mutant strains are found to produce the three latter fibrils but not canes, supporting our identification of the cane-shaped molecule as the agglutinin. The heads of the plus and minus canes are shown to differ in morphology. Moreover, two treatments that inactivate the plus agglutinin in vitro--thermolysin digestion and disulfide reduction/alkylation--bring about detectable structural changes only in the head domain of the cane, suggesting that the head may play an indispensible role in affecting gametic recognition/adhesion. We also present quick-freeze, deep-etch images of the flagellar surfaces of gametic, vegetative, and mutant cells of Chlamydomonas reinhardi. The gametic flagella are shown to carry the canes, short canes, loops, and crescents present in in vitro preparations. The cane and crescent proteins self-associate on the flagellar surface into stout fibers of uniform caliber, and they align along the longitudinal axis of the flagellum. The short canes and loops co-purify with flagella but, in the presence of mica, dissociate so that they lie to the sides of the flagella. The agglutinin canes of both mating types are oriented with their hooks at the membrane surface and their heads directed outward, where they are positioned to participate in the initial events of sexual agglutination.


1998 ◽  
Vol 120 (4) ◽  
pp. 476-483 ◽  
Author(s):  
Y. Huang ◽  
K.-M. Jan ◽  
D. Rumschitzki ◽  
S. Weinbaum

Huang et al. (1997) propose a new hypothesis and develop a mathematical model to explain rationally the in vitro and in situ measured changes (Tedgui and Lever, 1984; Baldwin and Wilson, 1993) in the hydraulic conductivity of the artery wall of rabbit aorta with transmural pressure. The model leads to the intriguing prediction that this hydraulic conductivity would decrease by one half if the thin intimal layer between the endothelium and the internal elastic lamina volume-compresses approximately fivefold. This paper presents the first measurements of the effect of transmural pressure on intimal layer thickness and shows that the intimal matrix is, indeed, surprisingly compressible. We perfusion-fixed rat thoracic aortas in situ with 2 percent glutaraldehyde solution at 0, 50, 100, or 150 mm Hg lumen pressure and sectioned for light and electron microscopic observations. Electron micrographs show a dramatic, nonlinear decrease in average intimal thickness, i.e., 0.62 ± 0.26, 0.27 ± 0.14, 0.15 ± 0.10, and 0.12 ± 0.07 (SD) μm for 0, 50, 100, and 150 mm Hg lumen pressure, respectively. The volume strain of the intima is more than 20 times greater than the radial strain of the artery wall due to hoop tension and two orders of magnitude greater than the consolidation of the artery wall as a whole assuming constant medial density (Chuong and Fung, 1984). Moreover, in both light and electron microscopic observations, it is easy to find numerous sites where the endothelium puckers into the fenestral pores at high lumen pressure, as predicted by the theory in Huang et al. (1997). In contrast, the average diameter of a fenestral pore increases only 10 percent as the lumen pressure is increased from 0 to 150 mm Hg. These results indicate that the thin intimal layer comprising less than 1 percent of the wall thickness can have a profound effect on the filtration properties of the wall due to the large change in Darcy permeability of the layer and the large reduction in the entrance area of the flow entering the fenestral pores, though the pores themselves experience only a minor enlargement due to hoop tension.


2020 ◽  
Author(s):  
Francesca Baggio ◽  
Udo Hetzel ◽  
Lisbeth Nufer ◽  
Anja Kipar ◽  
Jussi Hepojoki

ABSTRACTViruses need cells to replicate and, therefore, ways to counteract the host’s immune response. Mitochondria play central roles in mediating innate immunity, hence some viruses have developed mechanisms to alter mitochondrial functions. Herein we show that arenavirus nucleoprotein (NP) enters the mitochondria of infected cells and affects their morphological integrity. We initially demonstrate electron-dense inclusions within mitochondria of reptarenavirus infected cells and hypothesized that these represent viral NP. Software predictions then serve to identify a putative N-terminal mitochondrial targeting signal (MTS) in arenavirus NPs; however, comparisons of wild-type and N-terminus mutated NPs suggest MTS-independent mitochondrial entry. NP does not enter isolated mitochondria, indicating that translocation requires additional cellular factors or conditions. Immune electron microscopy finally confirms the presence of NP within the mitochondria both in vitro and in infected animals. We hypothesize that mitochondria targeting might complement the known interferon antagonist functions of NP or alter the cell’s metabolic state.


Sign in / Sign up

Export Citation Format

Share Document