disulfide reduction
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 15)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Yanhong Yang ◽  
Niutish Bastani ◽  
Sara K. Lagler ◽  
Doug Harris ◽  
Attila Nagy ◽  
...  

2021 ◽  
Author(s):  
Jan Felber ◽  
Lukas Zeisel ◽  
Lena Poczka ◽  
Karoline Scholzen ◽  
Sander Busker ◽  
...  

<p>Specialised cellular networks of oxidoreductases coordinate the dithiol/disulfide-exchange reactions that control metabolism, protein regulation, and redox homeostasis. For probes to be selective for redox enzymes and effector proteins (nM to µM concentrations), they must also be able to resist nonspecific triggering by the ca. 50 mM background of non-catalytic cellular monothiols. However, no such selective reduction-sensing systems have yet been established. Here, we used rational structural design to independently vary thermodynamic and kinetic aspects of disulfide stability, creating a series of unusual disulfide reduction trigger units designed for stability to monothiols. We integrated the motifs into modular series of fluorogenic probes that release and activate an arbitrary chemical cargo upon reduction, and compared their performance to that of the literature-known disulfides. The probes were comprehensively screened for biological stability and selectivity against a range of redox effector proteins and enzymes. This design process delivered the first disulfide probes with excellent stability to monothiols, yet high selectivity for the key redox-active protein effector, thioredoxin. We anticipate that further applications of these novel disulfide triggers will deliver unique probes targeting cellular thioredoxins. We also anticipate that further tuning following this design paradigm will deliver redox probes for other important dithiol-manifold redox proteins, that will be useful in revealing the hitherto hidden dynamics of endogenous cellular redox systems.</p>


2021 ◽  
Author(s):  
Jan Felber ◽  
Lukas Zeisel ◽  
Lena Poczka ◽  
Karoline Scholzen ◽  
Sander Busker ◽  
...  

<p>Specialised cellular networks of oxidoreductases coordinate the dithiol/disulfide-exchange reactions that control metabolism, protein regulation, and redox homeostasis. For probes to be selective for redox enzymes and effector proteins (nM to µM concentrations), they must also be able to resist nonspecific triggering by the ca. 50 mM background of non-catalytic cellular monothiols. However, no such selective reduction-sensing systems have yet been established. Here, we used rational structural design to independently vary thermodynamic and kinetic aspects of disulfide stability, creating a series of unusual disulfide reduction trigger units designed for stability to monothiols. We integrated the motifs into modular series of fluorogenic probes that release and activate an arbitrary chemical cargo upon reduction, and compared their performance to that of the literature-known disulfides. The probes were comprehensively screened for biological stability and selectivity against a range of redox effector proteins and enzymes. This design process delivered the first disulfide probes with excellent stability to monothiols, yet high selectivity for the key redox-active protein effector, thioredoxin. We anticipate that further applications of these novel disulfide triggers will deliver unique probes targeting cellular thioredoxins. We also anticipate that further tuning following this design paradigm will deliver redox probes for other important dithiol-manifold redox proteins, that will be useful in revealing the hitherto hidden dynamics of endogenous cellular redox systems.</p>


2021 ◽  
Vol 14 ◽  
Author(s):  
Bon-Kyung Koo ◽  
William Munroe ◽  
Edith B. Gralla ◽  
Joan Selverstone Valentine ◽  
Julian P. Whitelegge

Wild-type human SOD1 forms a highly conserved intra-molecular disulfide bond between C57-C146, and in its native state is greatly stabilized by binding one copper and one zinc atom per monomer rendering the protein dimeric. Loss of copper extinguishes dismutase activity and destabilizes the protein, increasing accessibility of the disulfide with monomerization accompanying disulfide reduction. A further pair of free thiols exist at C6 and C111 distant from metal binding sites, raising the question of their function. Here we investigate their role in misfolding of SOD1 along a pathway that leads to formation of amyloid fibrils. We present the seeding reaction of a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) to exclude variables caused by these free cysteines. Completely reduced fibril seeds decreasing the kinetic barrier to cleave the highly conserved intramolecular disulfide bond, and accelerating SOD1 reduction and initiation of fibrillation. Presence or absence of the pair of free thiols affects kinetics of fibrillation. Previously, we showed full maturation with both Cu and Zn prevents this behavior while lack of Cu renders sensitivity to fibrillation, with presence of the native disulfide bond modulating this propensity much more strongly than presence of Zn or dimerization. Here we further investigate the role of reduction of the native C57-C146 disulfide bond in fibrillation of wild-type hSOD1, firstly through removal of free thiols by paired mutations C6A, C111S (AS-SOD1), and secondly in seeded fibrillation reactions modulated by reductant tris (2-carboxyethyl) phosphine (TCEP). Fibrillation of AS-SOD1 was dependent upon disulfide reduction and showed classic lag and exponential growth phases compared with wild-type hSOD1 whose fibrillation trajectories were typically somewhat perturbed. Electron microscopy showed that AS-SOD1 formed classic fibrils while wild-type fibrillation reactions showed the presence of smaller “sausage-like” oligomers in addition to fibrils, highlighting the potential for mixed disulfides involving C6/C111 to disrupt efficient fibrillation. Seeding by addition of sonicated fibrils lowered the TCEP concentration needed for fibrillation in both wild-type and AS-SOD1 providing evidence for template-driven structural disturbance that elevated susceptibility to reduction and thus propensity to fibrillate.


2021 ◽  
Vol 120 (3) ◽  
pp. 128a
Author(s):  
Priti Roy ◽  
Subhajit Roy ◽  
Neelanjana Sengupta
Keyword(s):  

2021 ◽  
Vol 93 (4) ◽  
pp. 2596-2602
Author(s):  
Wen Li ◽  
Wenhui Pan ◽  
Meina Huang ◽  
Zhigang Yang ◽  
Ying He ◽  
...  

2021 ◽  
Vol 120 (1) ◽  
pp. 86-100
Author(s):  
Harshil K. Renawala ◽  
Karthik B. Chandrababu ◽  
Elizabeth M. Topp

Author(s):  
Tingwei Ren ◽  
Zhijun Tan ◽  
Vivekh Ehamparanathan ◽  
Angela Lewandowski ◽  
Sanchayita Ghose ◽  
...  

Disulfide bond reduction has been a challenging issue in antibody manufacturing, as it leads to reduced product purity, failed product specifications and more importantly, impacting drug safety and efficacy. Scientists across industry have been examining the root causes and developing mitigation strategies to address the challenge. In recent years, with the development of high-titer mammalian cell culture processes to meet the rapidly growing demand for antibody biopharmaceuticals, disulfide bond reduction has been observed more frequently. Thus, it is necessary to continue evolving the disulfide reduction mitigation strategy and development of novel approaches to achieve high product quality. Additionally, in recent years as more complex molecules emerge such as bispecific and trispecific antibodies, the molecular heterogeneity due to incomplete formation of the interchain disulfide bonds becomes a more imperative issue. Given the disulfide reduction challenges that our industry are facing, in this review, we provide a comprehensive contemporary scientific insight into the root cause analysis of disulfide reduction during process development of antibody therapeutics, mitigation strategies and recovery based on our expertise in commercial and clinical manufacturing of biologics. First, this paper intended to highlight different aspects of the root cause for disulfide reduction. Secondly, to provide a broader understanding of the disulfide bond reduction in downstream process, this paper discussed disulfide bond reduction impact to product stability and process performance, analytical methods for detection and characterization, process control strategies and their manufacturing implementation. In addition, brief perspectives on development of future mitigation strategies will also be reviewed, including platform alignment, mitigation strategy application for bi- and tri-specific antibodies and using machine learning to identify molecule susceptibility of disulfide bond reduction. The data in this review are originated from both the published papers and our internal development work.


Langmuir ◽  
2020 ◽  
Vol 36 (49) ◽  
pp. 14999-15009
Author(s):  
Essam M. Dief ◽  
Yan B. Vogel ◽  
Chandramalika R. Peiris ◽  
Anton P. Le Brun ◽  
Vinicius R. Gonçales ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Marta Hammerstad ◽  
Ingvild Gudim ◽  
Hans-Petter Hersleth

AbstractLow G+C Gram-positive Firmicutes, such as the clinically important pathogens Staphylococcus aureus and Bacillus cereus, use the low-molecular weight (LMW) thiol bacillithiol (BSH) as a defense mechanism to buffer the intracellular redox environment and counteract oxidative stress encountered by human neutrophils during infections. The protein YpdA has recently been shown to function as an essential NADPH-dependent reductase of oxidized bacillithiol disulfide (BSSB) resulting from stress responses and is crucial in maintaining the reduced pool of BSH and cellular redox balance. In this work, we present the first crystallographic structures of YpdAs, namely from S. aureus and B. cereus. Our analyses reveal a uniquely organized biological tetramer; however, the monomeric subunit has high structural similarity to other flavin disulfide reductases. The absence of a redox active cysteine in the vicinity of the FAD isoalloxazine ring implies a new direct disulfide reduction mechanism, which is backed by the presence of a potentially gated channel, serving as a putative binding site for BSSB in proximity to the FAD cofactor. We also report enzymatic activity for both YpdAs, which along with the structures presented in this work provide important structural and functional insight into a new class of FAD-containing NADPH-dependent oxidoreductases, related to the emerging fight against pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document