Réactivation du bourgeon cotylédonnaire du Pois en réponse à la kinétine

1981 ◽  
Vol 59 (5) ◽  
pp. 590-603 ◽  
Author(s):  
Arlette Nougarède ◽  
Jacques Rembur ◽  
Pierre Rondet

For three components (apical meristem, subapical internodes, and foliar apparatus) of Pisum sativum (cv. nain hâtif d'Annonay) cotyledonary buds, DNA microdensitometry, mitotic indices, and release of growth have been used to detect changes produced by kinetin applications (50 μg/mL). One kinetin treatment is sufficient to release the cell cycle, but continuous kinetin supply is necessary to maintain bud elongation. At the apical, subapical, and foliar levels, inhibited cotyledonary buds contain a majority of nuclei with 2C DNA content, in the G1 phase of the cell cycle. Following hormonal treatment, the prereplicative phase of the noncycling cells is at least 6 h in the whole bud. The lag period for the release of bud growth is between 15 and 23 h in subapical regions (first and second internodes) and between 23 and 38 h at the foliar level. At subapical and foliar levels, a few mitoses precede and then follow the elongation process. The first mitoses are from G2 nuclei of the inhibited bud. The following ones, more numerous, are from noncycling cells of inhibited buds, which have entered the S phase in response to kinetin application. The degree of inhibition of an axillary bud, estimated by the distribution of the DNA content in its three components, conditions the events induced by hormonal treatment or decapitation. The discussion shows how the knowledge of the original nuclear states of inhibited buds is necessary to understand axillary bud reactivation.

Genetics ◽  
1999 ◽  
Vol 151 (4) ◽  
pp. 1445-1457
Author(s):  
Deborah DeRyckere ◽  
Cheryl L Smith ◽  
G Steven Martin

Abstract The fission yeast cdc18+ gene is required for both initiation of DNA replication and the mitotic checkpoint that normally inhibits mitosis in the absence of DNA replication. The cdc18+ gene product contains conserved Walker A and B box motifs. Studies of other ATPases have shown that these motifs are required for nucleotide binding and hydrolysis, respectively. We have observed that mutant strains in which either of these motifs is disrupted are inviable. The effects of these mutations were examined by determining the phenotypes of mutant strains following depletion of complementing wild-type Cdc18. In both synchronous and asynchronous cultures, the nucleotide-hydrolysis motif mutant (DE286AA) arrests with a 1C–2C DNA content, and thus exhibits no obvious defects in entry into S phase or in the mitotic checkpoint. In contrast, in cultures synchronized by hydroxyurea arrest and release, the nucleotide-binding motif mutant (K205A) exhibits the null phenotype, with 1C and <1C DNA content, indicating a block in entry into S phase and loss of checkpoint control. In asynchronous cultures this mutant exhibits a mixed phenotype: a percentage of the population displays the null phenotype, while the remaining fraction arrests with a 2C DNA content. Thus, the phenotype exhibited by the K205A mutant is dependent on the cell-cycle position at which wild-type Cdc18 is depleted. These data indicate that both nucleotide binding and hydrolysis are required for Cdc18 function. In addition, the difference in the phenotypes exhibited by the nucleotide-binding and hydrolysis motif mutants is consistent with a two-step model for Cdc18 function in which nucleotide binding and hydrolysis are required for distinct aspects of Cdc18 function that may be executed at different points in the cell cycle.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 563
Author(s):  
Monika Rewers ◽  
Iwona Jedrzejczyk ◽  
Agnieszka Rewicz ◽  
Anna Jakubska-Busse

Orchidaceae is one of the largest and the most widespread plant families with many species threatened with extinction. However, only about 1.5% of orchids’ genome sizes have been known so far. The aim of this study was to estimate the genome size of 15 species and one infraspecific taxon of endangered and protected orchids growing wild in Poland to assess their variability and develop additional criterion useful in orchid species identification and characterization. Flow cytometric genome size estimation revealed that investigated orchid species possessed intermediate, large, and very large genomes. The smallest 2C DNA content possessed Liparis loeselii (14.15 pg), while the largest Cypripedium calceolus (82.10 pg). It was confirmed that the genome size is characteristic to the subfamily. Additionally, for four species Epipactis albensis, Ophrys insectifera, Orchis mascula, Orchis militaris and one infraspecific taxon, Epipactis purpurata f. chlorophylla the 2C DNA content has been estimated for the first time. Genome size estimation by flow cytometry proved to be a useful auxiliary method for quick orchid species identification and characterization.


2012 ◽  
Vol 5 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Brian P. O’Neill ◽  
Matthew P. Purnell ◽  
David J. Anderson ◽  
Lars K. Nielsen ◽  
Stevens M. Brumbley

1993 ◽  
Vol 104 (1) ◽  
pp. 31-36 ◽  
Author(s):  
C. de la Hoz ◽  
A. Baroja

The presence of high-ploidy cells in malignant tumours has long been documented. However, the biological significance of these cells is not known and there is a great deal of controversy over their proliferative potential. We have analysed the behaviour of these cells in two murine tumour lines, B16F10 melanoma and 3T3A31M angiosarcoma, determining their DNA content by microspectrophotometry and using time-lapse film studies. We have found a discrepancy between the presence of high-ploidy cells in metaphase and the absence of hyperploid telophases. High-ploidy metaphases may be aborted (mitotic polyploidization), prolonged in time or evolve in the form of multipolar, generally tripolar, mitoses. Our results suggest that high-ploidy cells are capable of proliferating, despite certain peculiarities in their cell cycle, and constitute a tumour subpopulation whose role in neoplasia merits further study.


Many components of cell and nuclear size and mass are correlated with nuclear DNA content in plants, as also are the durations and rates of such developmental processes as mitosis and meiosis. It is suggested that the multiple effects of the mass of nuclear DNA which affect all cells and apply throughout the life of the plant can together determine the minimum generation time for each species. The durations of mitosis and of meiosis are both positively correlated with nuclear DNA content and, therefore, species with a short minimum generation time might be expected to have a shorter mean cell cycle time and mean meiotic duration, and a lower mean nuclear DNA content, than species with a long mean minimum generation time. In tests of this hypothesis, using data collated from the literature, it is shown that the mean cell cycle time and the mean meiotic duration in annual species is significantly shorter than in perennial species. Furthermore, the mean nuclear DNA content of annual species is significantly lower than for perennial species both in dicotyledons and monocotyledons. Ephemeral species have a significantly lower mean nuclear DNA content than annual species. Among perennial monocotyledons the mean nuclear DNA content of species which can complete a life cycle within one year (facultative perennials) is significantly lower than the mean nuclear DNA content of those which cannot (obligate perennials). However, the mean nuclear DNA content of facultative perennials does not differ significantly from the mean for annual species. It is suggested that the effects of nuclear DNA content on the duration of developmental processes are most obvious during its determinant stages, and that the largest effects of nuclear DNA mass are expressed at times when development is slowest, for instance, during meiosis or at low temperature. It has been suggested that DNA influences development in two ways, directly through its informational content, and indirectly by the physical-mechanical effects of its mass. The term 'nucleotype' is used to describe those conditions of the nucleus which effect the phenotype independently of the informational content of the DNA. It is suggested that cell cycle time, meiotic duration, and minimum generation time are determined by the nucleotype. In addition, it may be that satellite DNA is significant in its nucleotypic effects on developmental processes.


2015 ◽  
Vol 57 (1) ◽  
pp. 104-113
Author(s):  
Sandra Cichorz ◽  
Maria Gośka ◽  
Monika Rewers

AbstractSinceM. sinensisAnderss.,M. sacchariflorus(Maxim.) Hack. andM. ×giganteusJ.M.Greef & Deuter ex Hodk. and Renvoize have considerably the highest potential for biomass production amongMiscanthusAnderss. species, there is an urgent need to broaden the knowledge about cytological characteristics required for their improvement. In this study our objectives were to assess the genome size variation among eighteenMiscanthusaccessions, as well as estimation of the monoploid genome size (2C and Cx) of theM. sinensiscultivars, which have not been analyzed yet. The characterization of threeMiscanthusspecies was performed with the use of flow cytometry and analysis of the stomatal length. The triploid (2n = 3x = 57)M. sinensis‘Goliath’ andM. ×giganteusclones possessed the highest 2C DNA content (8.34 pg and 7.43 pg, respectively). The intermediate 2C-values were found in the nuclei of the diploid (2n = 2x = 38)M. sinensisaccessions (5.52–5.72 pg), whereas they were the lowest in the diploid (2n = 2x = 38)M. sacchariflorusecotypes (4.58–4.59 pg). The presented study revealed interspecific variation of nuclear DNA content (P<0.01) and therefore allowed for recognition of particular taxa, inter- and intraspecific hybrids and prediction of potential parental components. Moreover, intraspecific genome size variation (P<0.01) was observed inM. sinensiscultivars at 3.62%. The values of the stomatal size obtained for the triploidM. ×giganteus‘Great Britain’ (mean 30.70 μm) or ‘Canada’ (mean 29.67 μm) and diploidM. sinensis‘Graziella’ (mean 29.96 μm) did not differ significantly, therefore this parameter is not recommended for ploidy estimation.


Genetics ◽  
2020 ◽  
Vol 215 (3) ◽  
pp. 729-746 ◽  
Author(s):  
Akshi Jasani ◽  
Tiffany Huynh ◽  
Douglas R. Kellogg

In all cells, progression through the cell cycle occurs only when sufficient growth has occurred. Thus, cells must translate growth into a proportional signal that can be used to measure and transmit information about growth. Previous genetic studies in budding yeast suggested that related kinases called Gin4 and Hsl1 could function in mechanisms that measure bud growth; however, interpretation of the data was complicated by the use of gene deletions that cause complex terminal phenotypes. Here, we used the first conditional alleles of Gin4 and Hsl1 to more precisely define their functions. We show that excessive bud growth during a prolonged mitotic delay is an immediate consequence of inactivating Gin4 and Hsl1. Thus, acute loss of Gin4 and Hsl1 causes cells to behave as though they cannot detect that bud growth has occurred. We further show that Gin4 and Hsl1 undergo gradual hyperphosphorylation during bud growth that is dependent upon growth and correlated with the extent of growth. Moreover, gradual hyperphosphorylation of Gin4 during bud growth requires binding to anionic phospholipids that are delivered to the growing bud. While alternative models are possible, the data suggest that signaling lipids delivered to the growing bud generate a growth-dependent signal that could be used to measure bud growth.


Sign in / Sign up

Export Citation Format

Share Document