The Xerulaceae (Basidiomycetes), a family with sarcodimitic tissues

1987 ◽  
Vol 65 (8) ◽  
pp. 1551-1562 ◽  
Author(s):  
S. A. Redhead

The taxonomic value of the presence of sarcodimitic tissues and derived tissues in the agarics was investigated. Basidiomata of only 15 genera of 153 agaric and bolete genera surveyed had sarcodimitic tissues. The family, the Xerulaceae, is recognized for these 15 lamellate, sarcodimitic genera along with 1 genus exhibiting modified tissues and 2 closely allied genera apparently lacking sarcodimitic tissues. It is hypothesized that they evolved convergently and then in parallel with members of the Tricholomataceae. Taxonomic difficulties arising from the apparent loss of the sarcodimitic tissues in evolutionarily advanced taxa within the Xerulaceae, such as Mycena and Xerula, are discussed. Antibiotics with an (E)-β-methoxyacrylate moiety (strobilurins, oudemansin), which are potentially useful against cancer, with one possible exception are found only in a number of genera with sarcodimitic or derived tissues currently assigned to the Xerulaceae. Two new combinations are proposed: Cystolepiota pusillomyces (Peck) comb.nov. and Floccularia albolanaripes (Atk.) comb.nov.

2003 ◽  
Vol 60 (3) ◽  
pp. 533-568 ◽  
Author(s):  
J. C. MANNING ◽  
P. GOLDBLATT ◽  
M. F. FAY

A revised generic synopsis of sub-Saharan Hyacinthaceae is presented, based on a molecular phylogenetic analysis of the family. Generic rank is accorded only to reciprocally monophyletic clades that can be distinguished by recognizable morphological discontinuities, thereby permitting an appropriate generic assignment of species not included in the analysis. Three subfamilies are recognized within the region. Subfamily Ornithogaloideae, characterized by flattened or angular seeds with tightly adhering testa, is considered to include the single genus Ornithogalum, which is expanded to include the genera Albuca, Dipcadi, Galtonia, Neopatersonia and Pseudogaltonia. Recognizing any of these segregates at generic level renders the genus Ornithogalum polyphyletic, while subdivision of Ornithogalum into smaller, morphologically distinguishable segregates in order to preserve the monophyly of each is not possible. Subfamily Urgineoideae, characterized by flattened or winged seeds with brittle, loosely adhering testa, comprises the two mainland African genera Bowiea and Drimia. The latter is well circumscribed by its deciduous, short-lived perianth and includes the previously recognized genera Litanthus, Rhadamanthus, Schizobasis and Tenicroa. The monotypic Madagascan Igidia is provisionally included in the subfamily as a third genus on the basis of its seeds, pending molecular confirmation of its relationships. Subfamily Hyacinthoideae resolves into three clades, distinguished as tribes Hyacintheae (strictly northern hemisphere and not treated further), Massonieae and Pseudoprospereae tribus nov. Full descriptions and a key to their identification are provided for all genera. New combinations reflecting the generic circumscriptions adopted here are made for most African and all Indian and Madagascan species.


Phytotaxa ◽  
2015 ◽  
Vol 208 (1) ◽  
pp. 97 ◽  
Author(s):  
Tamas Pócs ◽  
Rui-Liang Zhu ◽  
Elena Reiner-Drehwald ◽  
Lars Söderström ◽  
Anders Hagborg ◽  
...  

For the coming checklist of hornworts and liverworts (Söderström et al., in press) a few validations, transfers and synonymizations in the family Lejeuneaceae are still required. 


Phytotaxa ◽  
2014 ◽  
Vol 186 (4) ◽  
pp. 188 ◽  
Author(s):  
Ying-Ying Zhou ◽  
HONG-WEI ZHANG ◽  
JIANG-QIN HU ◽  
Xiao-Feng Jin

Sinalliaria is described here as a new genus of the family Brassicaceae from eastern China, based on the morphological characters and molecular sequences. Sinalliaria differs from the related genus Orychophragmus in having basal leaves petiolate, simple or rarely with 1‒3 lateral lobes (not pinnatisect); cauline leaves petiolate, cordate at base (not sessile, auriculate or amplexicaul at base); petals obovate to narrowly obovate, claw inconspicuous (not broadly obovate, with a claw as along as sepal); siliques truncate (not long-beaked) at apex. The microscopic characters of seed testa also show significant differences between Sinalliaria and Orychophragmus. Phylogenetic evidence from DNA sequences of nuclear ribosomal ITS and plastid region trnL-trnF indicates that Sinalliaria is a distinct group related to Orychophragmus and Raphanus, but these three genera do not form a clade. The new genus Sinalliaria is endemic to eastern China and has only one species and one variety. The new combinations, S. limprichtiana (Pax) X. F. Jin, Y. Y. Zhou & H. W. Zhang and S. limprichtiana var. grandifolia (Z. X. An) X. F. Jin, Y. Y. Zhou & H. W. Zhang are proposed here.


2021 ◽  
Vol 63 (3-4) ◽  
pp. 351-390
Author(s):  
S. Y. Kondratyuk ◽  
L. Lőkös ◽  
I. Kärnefelt ◽  
A. Thell ◽  
M.-H. Jeong ◽  
...  

Seven genera new to science, i.e.: Helmutiopsis, Huriopsis, Johnsheardia, Klauskalbia, Kudratovia, Kurokawia and Poeltonia of the Physciaceae are proposed for the ‘Rinodina’ atrocinerea, the ‘Rinodina’ xanthophaea, the ‘Rinodina’ cinnamomea, the ‘Heterodermia’ obscurata, the ‘Rinodina’ straussii, the ‘Anaptychia’ isidiata and the ‘Physconia’ grisea groups consequently that all form strongly supported monophyletic branches in a phylogeny analysis based on a combined matrix of nrITS and mtSSU sequences. Phylogenetic positions of species belonging to the genera Kashiwadia s. l., Leucodermia, Mischoblastia,Oxnerella, Phaeorrhiza s. l., Polyblastidium and Rinodinella s. l. are discussed. Oxnerella afghanica which for the first time recorded as parasitic lichen species from both epiphytic and saxicolous crustose lichens is designated as type species for the genus Oxnerella. Sequences of the recently described Physcia orientostellaris as well as Huriopsis xanthophaea and additional sequences of Kashiwadia aff. orientalis and Mischoblastia aff. oxydata are submitted to the GenBank. The positions of Polyblastidium casaterrinum from Costa Rica, ‘Rinodina’ efflorescens from Białowieża, Poland, and ‘Mischoblastia’ confragosula from Cambodia in the Physciaceae are confirmed in a phylogeny analysis based on the nrITS sequences. The presence of ‘extraneous mycobiont DNA’ in lichen associations is exemplified with earlier incorrect identifications of Heterodermia, Kashiwadia, Kurokawia,Oxnerella and Poeltonia specimens. Fifty-six new combinations are presented: Helmutiopsis alba (for Rinodina alba Metzler ex Arn.), Helmutiopsis aspersa (for Lecanora aspersa Borrer), Helmutiopsis atrocinerea (for Parmelia atrocinerea Fr.), Huriopsis chrysidiata (for Rinodina chrysidiata Sheard), Huriopsis chrysomelaena (for Rinodina chrysomelaena Tuck.), Huriopsis lepida (for Lecanora lepida Nyl.), Huriopsis luteonigra (for Rinodina luteonigra Zahlbr.), Huriopsis plana (for Rinodina plana H. Magn.), Huriopsis thiomela (for Lecanora thiomela Nyl.), Huriopsis xanthomelana (for Rinodina xanthomelana Müll. Arg.), Huriopsis xanthophaea (for Lecanora xanthophaea Nyl.), Johnsheardia cinnamomea (for Rinodina mniaroea var. cinnamomea Th. Fr.), Johnsheardia herteliana (for Rinodina herteliana Kaschik), Johnsheardia jamesii (for Rinodina jamesii H. Mayrhofer), Johnsheardia reagens (for Rinodina reagens Matzer et H. Mayrhofer), Johnsheardia zwackhiana (for Lecanora zwackhiana Kremp.), Kashiwadia austrostellaris (for Physcia austrostellaris Elix), Kashiwadia jackii (for Physcia jackii Moberg), Kashiwadia littoralis for Physcia littoralis Elix), Kashiwadia nubila (for Physcia nubila Moberg), and Kashiwadia tropica (for Physcia tropica Elix), Klauskalbia crocea (for Heterodermia crocea R. C. Harris), Klauskalbia flabellata (for Parmelia flabellata Fée), Klauskalbia obscurata (for Physcia speciosa (Wulfen) Nyl. *obscurata Nyl.), Klauskalbia paradoxa (for Heterodermia paradoxa Schumm et Schäfer-Verwimp), Kudratovia bohlinii (for Rinodina bohlinii H. Magn.), Kudratovia candidogrisea (for Rinodina candidogrisea Hafellner, Muggia et Obermayer), Kudratovia luridata (for Buellia luridata Körb.), Kudratovia metaboliza (for Rinodina metaboliza Vain.), Kudratovia pycnocarpa (for Rinodina pycnocarpa H. Magn.), Kudratovia roscida (for Lecanora roscida Sommerf.), Kudratovia straussii (for Rinodina straussii J. Steiner), Kudratovia terrestris (for Rinodina terrestris Tomin), Kurokawia bryorum (for Anaptychia bryorum Poelt), Kurokawia isidiata (for Anaptychia isidiata Tomin), Kurokawia mereschkowskii (for Physcia mereschkowskii Tomin), Kurokawia palmulata (for Psoroma palmulatum Michx.), Kurokawia runcinata (for Lichen runcinatus With.), Kurokawia stippea (for Parmelia aquila var. stippea Ach.), Lecania safavidiorum (for Oxnerella safavidiorum S. Y. Kondr., Zarei-Darki, Lőkös et Hur), Leucodermia erinacea (for Lichen erinaceus Ach.), Mischoblastia confragosula (for Lecanora confragosula Nyl.), Mischoblastia destituta (for Lecidea destituta Nyl.), Mischoblastia moziana (for Lecanora moziana Nyl.), Mischoblastia moziana subsp. parasitica (comb. et stat. nova for Rinodina moziana var. parasitica Kaschik et H. Mayrhofer), Mischoblastia ramboldii (for Rinodina ramboldii Kaschik), Mischoblastia vezdae (for Rinodina vezdae H. Mayrhofer), Oxnerella afghanica (for Rinodina afghanica M. Steiner et Poelt), Oxnerella castanomelodes (for Rinodina castanomelodes H. Mayrhofer et Poelt), Physciella nigricans (for Lecanora nigricans Flörke), Poeltonia elegantula (for Physconia elegantula Essl.), Poeltonia grisea (for Lichen griseus Lam.), Poeltonia isidiomuscigena (for Physconia isidiomuscigena Essl.), Poeltonia perisidiosa (for Physcia perisidiosa Erichsen), Poeltonia venusta (for Parmelia venusta Ach.), and Polyblastidium albicans (for Parmelia albicans Pers.) are proposed.


2016 ◽  
Vol 47 (1) ◽  
pp. 53-82 ◽  
Author(s):  
Werner P. Strümpher ◽  
Martin H. Villet ◽  
Catherine L. Sole ◽  
Clarke H. Scholtz

Extant genera and subgenera of the Trogidae (Coleoptera: Scarabaeoidea) are reviewed. Contemporary classifications of this family have been based exclusively on morphological characters. The first molecular phylogeny for the family recently provided strong support for the relationships between morphologically defined genera and subgenera. On the basis of morphological, molecular and biogeographical evidence, certain taxonomic changes to the genus-level classification of the family are now proposed. The family is confirmed as consisting of two subfamilies, Omorginae Nikolajev and Troginae MacLeay, the former with two genera,OmorgusErichson andPolynoncusBurmeister, and the latter with two genera,TroxFabricius andPhoberusMacLeaystat. rev.Phoberusis restored to generic rank to include all Afrotropical (including Madagascan endemic) species;Afromorgusis confirmed at subgeneric rank within the genusOmorgus; and the monotypic Madagascan genusMadagatroxsyn. n.is synonymised withPhoberus.The current synonymies ofPseudotroxRobinson (withTrox),ChesasBurmeister,LagopelusBurmeister andMegalotroxPreudhomme de Borre (all withOmorgus) are all accepted to avoid creating speculative synonyms before definitive phylogenetic evidence is available. New combinations resulting from restoringPhoberusto a monophyletic genus are listed in Appendix A.


MycoKeys ◽  
2018 ◽  
Vol 36 ◽  
pp. 83-105 ◽  
Author(s):  
Jing Yang ◽  
Jian-Kui Liu ◽  
Kevin D. Hyde ◽  
E.B. Gareth Jones ◽  
Zuo-Yi Liu

A survey of freshwater fungi on submerged wood in China and Thailand resulted in the collection of three species in Dictyocheirospora and four species in Dictyosporium including two new species in the latter genus. Morphological characters and phylogenetic analyses based on ITS, LSU and TEF1α sequence data support their placement in Dictyocheirospora and Dictyosporium (Dothideomycetes). An updated backbone tree is provided for the family Dothideomycetes. Descriptions and illustrations of the new taxa and re-collections are provided. Four new combinations are proposed for Dictyocheirospora.


2020 ◽  
Vol 103 (1) ◽  
pp. 1-46
Author(s):  
Yuan-Bing Wang ◽  
Yao Wang ◽  
Qi Fan ◽  
Dong-E Duan ◽  
Guo-Dong Zhang ◽  
...  

Abstract The phylogeny and systematics of cordycipitoid fungi have been extensively studied in the last two decades. However, systematic positions of some taxa in the family Cordycipitaceae have not yet been thoroughly resolved. In this study, a new phylogenetic framework of Cordycipitaceae is reconstructed using multigene (nrSSU, nrLSU, tef-1α, rpb1 and rpb2) sequence data with large-scale taxon sampling. In addition, ITS sequence data of species belonging to the Lecanicillium lineage in the family Cordycipitaceae are used to further determine their phylogenetic placements. Based on molecular phylogenetic data together with morphological evidence, two new genera (Flavocillium and Liangia), 16 new species and four new combinations are introduced. In the new genus Flavocillium, one new species F. bifurcatum and three new combinations previously described as Lecanicillium, namely F. acerosium, F. primulinium and F. subprimulinium, are proposed. The genus Liangia is built by the new species Lia. sinensis with Lecanicillium-like asexual morph, isolated from an entomopathogenic fungus Beauveria yunnanensis. Due to the absence of Paecilomyces hepiali, an economically and medically significant fungus, in the earlier phylogenetic analyses, its systematic position has been puzzling in both business and academic communities for a long time. Here, P. hepiali is recharacterized using the holotype material along with seven additional samples. It is assigned to the genus Samsoniella (Cordycipitaceae, Hypocreales) possessing Cordyceps-like sexual morph and Isaria-like asexual morph, and thus a new combination, namely S. hepiali is proposed. An additional nine new species in Samsoniella are described: S. alpina, S. antleroides, S. cardinalis, S. cristata, S. lanmaoa, S. kunmingensis, S. ramosa, S. tortricidae and S. yunnanensis. Four new species in Cordyceps are described: C. chaetoclavata, C. cocoonihabita, C. shuifuensis and C. subtenuipes. Simplicillium yunnanense, isolated from synnemata of Akanthomyces waltergamsii, is described as a new species.


Zootaxa ◽  
2018 ◽  
Vol 4434 (2) ◽  
pp. 265
Author(s):  
GEOVANNI M. RODRÍGUEZ-MIRÓN

A checklist of the Megalopodidae of the world is presented. A total of 582 species in 29 genera and 11 subgenera are recognized belonging to the three subfamilies. The subfamilies, genera, and species are listed in alphabetical order. For each species, synonymous names and the geographical distribution by country is provided. The most diversified subfamily is Megalopodinae with 480 species and 24 genera. The Neotropical biogeographic region has the highest diversity of Megalopodidae, followed by the Ethiopian region. The knowledge of Megalopodidae is limited, and is remarkably biased by country. A significant increase in geographic and taxonomic information is needed in order to fill these knowledge gaps. The following taxonomic and nomenclatural changes are proposed: 1) type species are designated for the genera Macrolopha Weise and Falsomegalopus Pic. 2) Zeugophora novobicolor Rodríguez-Mirón is proposed as new replacement name of Zeugophora bicolor. 3) The following taxa are reinstated in the genera Temnaspis: T. speciosus Baly, T. arida Westwood, and T. nigriceps Baly. 4) Falsotemnaspis luteimembris Pic is proposed as new synonym (= F. lacordairei (Westwood)). 5) The next new combinations are proposed: Macrolopha bicolor (Jacoby), M. carinata (Bryant), M. centromaculata (Jacoby), M. costatipennis (Pic), M. dollmani (Bryant), M. hargreavesi (Bryan), M. mashuana (Jacoby), M. murrayi (Baly), M. neavei (Bryant), M. nyassae (Bryant), M. suturalis (Clavareau), M. variabilis (Westwood), M. aeneipennis (Weise), M. notaticollis (Pic), M. parvula (Weswood), M. theresae (Pic), M. tricoloripes (Pic) and Falsotemnaspis lacordairei (Westwood). 


1971 ◽  
Vol 49 (6) ◽  
pp. 869-880 ◽  
Author(s):  
David Malloch ◽  
R. F. Cain

The family Sordariaceae is briefly defined and a list of cleistothecial genera given. Two species of Anixiella Saito & Minoura ex Cain, A. endodonta sp. nov., and A. monospora sp. nov. are described and a key to the four species of the genus included. Apodus deciduus gen. et sp. nov. is described. Two new combinations in Echinopodospora Robison, E. spinosa (Cailleux) Malloch & Cain and E. verruculosa (Cailleux) Malloch & Cain, are proposed to accept transfers from Tripterospora Cain and are followed by a key to species of Echinopodospora. The concept of Zopfiella Winter is broadened to include Z. pleuropora sp. nov. and three new combinations, Z. inermis (Cailleux) Malloch & Cain, Z. latipes (Lundqvist) Malloch & Cain, and Z. leucotricha (Speg.) Malloch & Cain, transferred from Tripterospora. A key to the six species of Zopfiella is presented. The new family Coniochaetaceae is proposed to accommodate the new genus Coniochaetidium and Coniochaeta (Sacc.) Massee. Two species of Coniochaetidium are described, C. ostreum sp. nov. and C. savoryi (Booth) Malloch & Cain, comb, nov., based on Thielavia savoryi Booth.


Sign in / Sign up

Export Citation Format

Share Document