single genus
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 70)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 46 (4) ◽  
pp. 891-915
Author(s):  
Susan Fawcett ◽  
Alan R. Smith ◽  
Michael Sundue ◽  
J. Gordon Burleigh ◽  
Emily B. Sessa ◽  
...  

Abstract— The generic classification of the Thelypteridaceae has been the subject of much controversy. Proposed taxonomic systems have varied from recognizing the approximately 1200 species in the family within the single genus Thelypteris, to systems favoring upwards of 30 genera. Insights on intrafamilial relationships, especially for neotropical taxa, have been gained from recent phylogenetic studies; however, in the most recent classification, 10 of 30 recognized genera are either non-monophyletic or untested. We sequenced 407 nuclear loci for 621 samples, representing all recognized genera and approximately half the known species diversity. These were analyzed using both maximum likelihood analysis of a concatenated matrix and multi-species coalescent methods. Our phylogenomic results, informed by recently published morphological evidence, provide the foundation for a generic classification which recircumscribed 14 genera and recognized seven new genera. The 37 monophyletic genera sampled demonstrate greater geographic coherence than previous taxonomic concepts suggested. Additionally, our results demonstrate that certain morphological characters, such as frond division, are evolutionarily labile and are thus inadequate for defining genera.


Author(s):  
Nick Jones ◽  
Barbara C. Klump ◽  
Teresa M. Abaurrea ◽  
Sophie Harrower ◽  
Clare Marr ◽  
...  

Ballistic predation is a rare foraging adaptation: in fishes, most attention has focused on a single genus, the archerfish, known to manipulate water to shoot down prey above the water surface. However, several gourami species also exhibit apparently similar ‘shooting’ behaviour, spitting water up to 5cm above the surface. In a series of experiments, we explored the shooting behaviour and aspects of its significance as a foraging ability in the dwarf gourami (Trichogaster lalius). We investigated sex differences in shooting abilities as gourami shooting may be related to the sex-specific bubble nest manufacture - where males mix air and water at the surface to form bubbles - finding that actually both sexes are equally able to shoot and learn to shoot a novel target. In a second experiment, we presented untrained gouramis with opportunities to shoot at live prey and found they successfully shot down both fruit flies and crickets. Finally, we explored the effect of target height on shooting performance to establish potential constraints of shooting as a foraging ability. The frequency of attempted shots and success of hitting targets decreased with height while latency to shoot increased. We also observed that repeatable individual differences account for variation in these measures of shooting performance. Together our results provide evidence that gourami shooting has a foraging function analogous to that of archerfish. Gourami shooting may serve as an example of convergent evolution and provide opportunities for comparative studies into the, yet unexplored, ecology and evolution of shooting in fishes.


Author(s):  
Stephen L. W. On ◽  
William G. Miller ◽  
Patrick J. Biggs ◽  
Angela J. Cornelius ◽  
Peter Vandamme

This paper re-examines the taxonomic positions of recently described Poseidonibacter (P. parvum and P. antarcticus ), Aliarcobacter (‘Al. vitoriensis’), Halarcobacter (‘H. arenosus’) and Arcobacter ( A. caeni , A. lacus ) species, and other species proposed to represent novel genera highly related to the genus Arcobacter . Phylogenomic and several overall genome relatedness indices (OGRIs) were applied to a total of 118 representative genomes for this purpose. Phylogenomic analyses demonstrated the Arcobacter clade to be distinct from other Epsilonproteobacteria , clearly defined and containing closely related species. Aliarcobacter butzleri and Malaciobacter pacificus did not cluster with other members of these proposed genera, indicating incoherence of these genera. Every OGRI measure applied indicated a high level of relatedness among all Arcobacter clade species, including the recently described taxa studied here, and substantially lower between type species representatives for other Epsilonproteobacteria. Where published guidelines were available, OGRI values for Arcobacter clade species were either unsupportive of division into other genera or were at the lowest boundary range (for average amino acid identity). We propose that Aliarcobacter , Halarcobacter , Malaciobacter , Pseudarcobacter , Poseidonibacter and Arcobacter sensu stricto be considered members of a single genus, Arcobacter , and subsequently transfer P. parvum, P. antarcticus , ‘ Al. vitoriensis ’ and ‘H. arenosus’ to Arcobacter as Arcobacter parvum comb. nov., Arcobacter antarcticus comb. nov., Arcobacter vitoriensis comb. nov. and Arcobacter arenosus comb. nov.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2551
Author(s):  
Geoffrey E. Burrows

Gymnosperms are generally regarded as poor resprouters, especially when compared to angiosperms and particularly following major disturbance. However, is it this clear-cut? This review investigates two main aspects of gymnosperm resprouting: (i) various papers have provided exceptions to the above generalization—how frequent are these exceptions and are there any taxonomic trends?; and (ii) assuming gymnosperms are poor resprouters are there any anatomical or physiological reasons why this is the case? Five of six non-coniferous gymnosperm genera and 24 of 80 conifer genera had at least one species with a well-developed resprouting capability. This was a wider range than would be expected from the usual observation ‘gymnosperms are poor resprouters’. All conifer families had at least three resprouting genera, except the monospecific Sciadopityaceae. Apart from the aboveground stem, buds were also recorded arising from more specialised structures (e.g., lignotubers, tubers, burls and underground stems). In some larger genera it appeared that only a relatively small proportion of species were resprouters and often only when young. The poor resprouting performance of mature plants may stem from a high proportion of apparently ‘blank’ leaf axils. Axillary meristems have been recorded in a wide range of conifer species, but they often did not form an apical dome, leaf primordia or vascular connections. Buds or meristems that did form often abscised at an early stage. While this review has confirmed that conifers do not resprout to the same degree as angiosperms, it was found that a wide diversity of gymnosperm genera can recover vegetatively after substantial disturbance. Further structural studies are needed, especially of: (i) apparently blank leaf axils and the initial development of axillary meristems; (ii) specialised regeneration structures; and (iii) why high variability can occur in the resprouting capacity within species of a single genus and within genera of the same family.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 597
Author(s):  
Laura N. Sutherland ◽  
Kyle E. Schnepp ◽  
Gareth S. Powell ◽  
Seth M. Bybee

The tribe Plesioclytini was recently erected for a single genus of cerambycine longhorn beetle. The group was diagnosed from a proposed sister lineage, the diverse Clytini; however, a formal phylogenetic analysis was not performed due to limitations in data availability. Here, we present a phylogenetic reconstruction from five loci, that Plesioclytini is not sister to Clytini, but is instead only distantly related. Subsequent morphological investigations provide additional support for this placement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rafael R. de la Haba ◽  
Hiroaki Minegishi ◽  
Masahiro Kamekura ◽  
Yasuhiro Shimane ◽  
Antonio Ventosa

The haloarchaeal genera Natrinema and Haloterrigena were described almost simultaneously by two different research groups and some strains studied separately were described as different species of these genera. Furthermore, the description of additional species were assigned to either Natrinema or Haloterrigena, mainly on the basis of the phylogenetic comparative analysis of single genes (16S rRNA gene and more recently rpoB’ gene), but these species were not adequately separated or assigned to the corresponding genus. Some studies suggested that the species of these two genera should be unified into a single genus, while other studies indicated that the genera should remain but some of the species should be reassigned. In this study, we have sequenced or collected the genomes of the type strains of species of Natrinema and Haloterrigena and we have carried out a comparative genomic analysis in order to clarify the controversy related to these two genera. The phylogenomic analysis based on the comparison of 525 translated single-copy orthologous genes and the Overall Genome Relatedness Indexes (i.e., AAI, POCP, ANI, and dDDH) clearly indicate that the species Haloterrigena hispanica, Haloterrigena limicola, Haloterrigena longa, Haloterrigena mahii, Haloterrigena saccharevitans, Haloterrigena thermotolerans, and Halopiger salifodinae should be transferred to the genus Natrinema, as Natrinema hispanicum, Natrinema limicola, Natrinema longum, Natrinema mahii, Natrinema saccharevitans, Natrinema thermotolerans, and Natrinema salifodinae, respectively. On the contrary, the species Haloterrigena turkmenica, Haloterrigena salifodinae, and Haloterrigena salina will remain as the only representative species of the genus Haloterrigena. Besides, the species Haloterrigena daqingensis should be reclassified as a member of the genus Natronorubrum, as Natronorubrum daqingense. At the species level, Haloterrigena jeotgali and Natrinema ejinorense should be considered as a later heterotypic synonyms of the species Haloterrigena (Natrinema) thermotolerans and Haloterrigena (Natrinema) longa, respectively. Synteny analysis and phenotypic features also supported those proposals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ola Alessa ◽  
Yoshitoshi Ogura ◽  
Yoshiko Fujitani ◽  
Hideto Takami ◽  
Tetsuya Hayashi ◽  
...  

The pink-pigmented facultative methylotrophs (PPFMs), a major bacterial group found in the plant phyllosphere, comprise two genera: Methylobacterium and Methylorubrum. They have been separated into three major clades: A, B (Methylorubrum), and C. Within these genera, however, some species lack either pigmentation or methylotrophy, which raises the question of what actually defines the PPFMs. The present study employed a comprehensive comparative genomics approach to reveal the phylogenetic relationship among the PPFMs and to explain the genotypic differences that confer their different phenotypes. We newly sequenced the genomes of 29 relevant-type strains to complete a dataset for almost all validly published species in the genera. Through comparative analysis, we revealed that methylotrophy, nitrate utilization, and anoxygenic photosynthesis are hallmarks differentiating the PPFMs from the other Methylobacteriaceae. The Methylobacterium species in clade A, including the type species Methylobacterium organophilum, were phylogenetically classified into six subclades, each possessing relatively high genomic homology and shared phenotypic characteristics. One of these subclades is phylogenetically close to Methylorubrum species; this finding led us to reunite the two genera into a single genus Methylobacterium. Clade C, meanwhile, is composed of phylogenetically distinct species that share relatively higher percent G+C content and larger genome sizes, including larger numbers of secondary metabolite clusters. Most species of clade C and some of clade A have the glutathione-dependent pathway for formaldehyde oxidation in addition to the H4MPT pathway. Some species cannot utilize methanol due to their lack of MxaF-type methanol dehydrogenase (MDH), but most harbor an XoxF-type MDH that enables growth on methanol in the presence of lanthanum. The genomes of PPFMs encode between two and seven (average 3.7) genes for pyrroloquinoline quinone-dependent alcohol dehydrogenases, and their phylogeny is distinctly correlated with their genomic phylogeny. All PPFMs were capable of synthesizing auxin and did not induce any immune response in rice cells. Other phenotypes including sugar utilization, antibiotic resistance, and antifungal activity correlated with their phylogenetic relationship. This study provides the first inclusive genotypic insight into the phylogeny and phenotypes of PPFMs.


2021 ◽  
Author(s):  
Emanuel Tschopp ◽  
James G Napoli ◽  
Lukardis C M Wencker ◽  
Massimo Delfino ◽  
Paul Upchurch

Abstract Generally, the species is considered to be the only naturally occurring taxon. However, species recognised and defined using different species delimitation criteria cannot readily be compared, impacting studies of biodiversity through Deep Time. This comparability issue is particularly marked when comparing extant with extinct species, because the only available data for species delimitation in fossils is derived from their preserved morphology, which is generally restricted to osteology in vertebrates. Here, we quantify intraspecific, intrageneric, and intergeneric osteological variability in extant species of lacertid lizards using pairwise dissimilarity scores based on a dataset of 253 discrete osteological characters for 99 specimens referred to 24 species. Variability is always significantly lower intraspecifically than between individuals belonging to distinct species of a single genus, which is in turn significantly lower than intergeneric variability. Average values of intraspecific variability and associated standard deviations are consistent (with few exceptions), with an overall average within a species of 0.208 changes per character scored. Application of the same methods to six extinct lacertid species (represented by 40 fossil specimens) revealed that intraspecific osteological variability is inconsistent, which can at least in part be attributed to different researchers having unequal expectations of the skeletal dissimilarity within species units. Such a divergent interpretation of intraspecific and interspecific variability among extant and extinct species reinforces the incomparability of the species unit. Lacertidae is an example where extant species recognised and defined based on a number of delimitation criteria show comparable and consistent intraspecific osteological variability. Here, as well as in equivalent cases, application of those skeletal dissimilarity values to palaeontological species delimitation potentially provides a way to ameliorate inconsistencies created by the use of morphology to define species.


2021 ◽  
Vol 9 (9) ◽  
pp. 1873
Author(s):  
Adriana Messyasz ◽  
Rebecca L. Maher ◽  
Sonora S. Meiling ◽  
Rebecca Vega Thurber

While studies show that nutrient pollution shifts reef trophic interactions between fish, macroalgae, and corals, we know less about how the microbiomes associated with these organisms react to such disturbances. To investigate how microbiome dynamics are affected during nutrient pollution, we exposed replicate Porites lobata corals colonized by the fish Stegastes nigricans, which farm an algal matrix on the coral, to a pulse of nutrient enrichment over a two-month period and examined the microbiome of each partner using 16S amplicon analysis. We found 51 amplicon sequence variants (ASVs) shared among the three hosts. Coral microbiomes had the lowest diversity with over 98% of the microbiome dominated by a single genus, Endozoicomonas. Fish and algal matrix microbiomes were ~20 to 70× more diverse and had higher evenness compared to the corals. The addition of nutrients significantly increased species richness and community variability between samples of coral microbiomes but not the fish or algal matrix microbiomes, demonstrating that coral microbiomes are less resistant to nutrient pollution than their trophic partners. Furthermore, the 51 common ASVs within the 3 hosts indicate microbes that may be shared or transmitted between these closely associated organisms, including Vibrionaceae bacteria, many of which can be pathogenic to corals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vinícius Campos de Molla ◽  
Vitor Heidrich ◽  
Julia Stephanie Bruno ◽  
Franciele Hinterholz Knebel ◽  
Wanessa Miranda-Silva ◽  
...  

AbstractIntestinal microbiota (IM) diversity and composition regulates host immunity and affects outcomes after allogeneic stem cell transplantation (allo-HSCT). We evaluated if the oral mucosa microbiota (OM) could impact the outcomes in patients who underwent allo-HSCT. Samples from the oral mucosa of 30 patients were collected at three time points: before the conditioning regimen, at aplasia, and at engraftment. We analyzed the associations of OM diversity and composition with allo-HSCT outcomes. Lower OM diversity at preconditioning was associated with a higher risk of relapse at 3 years (68% versus 33%, respectively; P = 0.04). Dominance (relative abundance ≥ 30%) by a single genus at preconditioning was also associated with a higher risk of relapse (63% versus 36% at 3 years, respectively; P = 0.04), as well as worse progression-free survival (PFS; 19% versus 55%, respectively; P = 0.01), and overall survival (OS) at 3 years (38% versus 81%, respectively; P = 0.02). In our study we observed that OM dysbiosis is associated with a higher risk of relapse and worse survival after allo-HSCT.


Sign in / Sign up

Export Citation Format

Share Document