Early stages of blue-stain fungus invasion of lodgepole pine sapwood following mountain pine beetle attack

1995 ◽  
Vol 73 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Halvor Solheim

Invasion of lodgepole pine sapwood by blue-stain fungi was followed for 7 weeks after infestation by the mountain pine beetle, Dendroctonus ponderosae. During this period all sapwood was heavily stained blue and blue-stain fungi were always isolated close to the front of visible occlusion. Ophiostoma clavigerum and Ophiostoma montium were commonly isolated, both of which are known to be carried in the mycangia of the mountain pine beetle. Ophiostoma montium was most frequently isolated, but when both fungi were present O. clavigerum was always at the leading edge of fungal penetration. On average O. montium trailed 7.3 mm behind O. clavigerum. Other microorganisms were seldom isolated. Key words: lodgepole pine, Dendroctonus ponderosae, fungal succession, blue-stain fungi.

1998 ◽  
Vol 76 (4) ◽  
pp. 561-566 ◽  
Author(s):  
Halvor Solheim ◽  
Paal Krokene

The mountain pine beetle (Dendroctonus ponderosae) is commonly associated with the blue-stain fungi Ophiostoma clavigerum and Ophiostoma montium. Ophiostoma clavigerum is the primary invader of sapwood after beetle infestation and is thought to be the most virulent of the two fungi. Growth of these fungi was studied under oxygen-deficient conditions on malt agar in test tubes and Petri dishes. In addition, growth was studied in phloem and sapwood of young living shore pines (Pinus contorta var. contorta) and western white pines (Pinus monticola) inoculated with fungus in low densities (eight inoculations per tree). In test tubes with limited oxygen O. clavigerum grew for a longer time than O. montium. Both fungi are fast growing on malt agar (maximum growth 4.4-9.0 mm/day), but O. clavigerum grew better at temperatures below 25°C. The rapid growth and the ability to tolerate low oxygen levels may be important adaptations for O. clavigerum as the primary invader of fresh sapwood. However, although O. clavigerum grew better in the phloem of both tree species, there were no differences between the two fungi in their ability to colonize the sapwood of the inoculated trees.Key words: blue-stain fungi, Dendroctonus ponderosae, growth rate, oxygen deficiency, virulence.


1987 ◽  
Vol 65 (1) ◽  
pp. 95-102 ◽  
Author(s):  
H. S. Whitney ◽  
R. J. Bandoni ◽  
F. Oberwinkler

A new basidiomycete, Entomocorticium dendroctoni Whitn., Band. & Oberw., gen. et sp. nov., is described and illustrated. This cryptic fungus intermingles with blue stain fungi and produces abundant essentially sessile basidiospores in the galleries and pupal chambers of the mountain pine bark beetle (Dendroctonus ponderosae Hopkins Coleoptera: Scolytidae) in lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.). The insect apparently disseminates the fungus. Experimentally, young partially insectary reared adult beetles fed E. dendroctoni produced 19% more eggs than beetles fed the blue stain fungi.


1990 ◽  
Vol 20 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Y. Yamaoka ◽  
R. H. Swanson ◽  
Y. Hiratsuka

In two separate experiments in the field, healthy 80-year-old lodgepole pine (Pinuscontorta Dougl. var. latifolia Engelm.) were inoculated with four blue-stain fungi that are associated with mountain pine beetle (Dendroctonusponderosae Hopk.) and beetle-attacked trees. Inocula of Ophiostomaclavigerum (Robins.-Jeff. & Davids.) Harrington, O, huntii (Robins.-Jeff.) de Hoog & Scheffer, O. montium (Rumb.) von Arx, and O. minus (Hedge.) H. & P. Sydow were prepared on sawdust media. Inoculum was placed under the bark in two areas (8 × 5 cm each), one above the other, separated by a 15-cm space in which heat pulse velocity (HPV) sensors were installed. HPVs in the inoculated trees were monitored daily for 4 weeks. In sections inoculated with O. clavigerum, HPVs were significantly reduced 10 to 13 days after inoculation in both experiments. Sapwood under the inoculated area was visibly altered and colonized by the fungus. The other three fungi did not significantly reduce HPVs. These results proved the capability of O. clavigerum to colonize functional sapwood and stop sap flow within a short period of time and reconfirmed the importance of this fungus in the mortality of trees attacked by mountain pine beetle.


2007 ◽  
Vol 85 (3) ◽  
pp. 316-323 ◽  
Author(s):  
A.V. Rice ◽  
M.N. Thormann ◽  
D.W. Langor

Mountain pine beetle (MPB) is the most serious pest of lodgepole pine in western Canada, and it is predicted to spread into boreal jack pine within the next few years. Colonization of host trees by MPB-associated blue-stain fungi appears to be required for successful beetle reproduction. Three species of blue-stain fungi, Grosmannia clavigera (Robinson-Jeffery and Davidson) Zipfel, de Beer, and Wingfield (≡ Ophiostoma clavigerum (Robinson-Jeffery and Davidson) Harrington), Ophiostoma montium (Rumbold) von Arx, and Leptographium longiclavatum Lee, Kim, and Breuil, are associated with MPB in Alberta. In inoculation experiments, all three fungi caused lesions on lodgepole pine, jack pine, and their hybrids. On average, lesions were longer on jack pine and hybrids than on lodgepole pine, suggesting that fungal development will not be a barrier to MPB success in these trees. Differences in lesion length caused by the three fungal species were minimal, with significant differences observed only on hybrid pine and between O. montium and the other fungal treatments. On average, lesions caused by combinations of the three fungi (pair-wise and all together) did not differ significantly in length from those caused by the fungi singly, and none of the fungal species competitively excluded any of the others. These observations suggest that all three species are pathogenic to boreal pines and that the virulence of all three species is comparable.


1979 ◽  
Vol 9 (3) ◽  
pp. 323-326 ◽  
Author(s):  
Robert D. Harvey Jr.

Recently killed lodgepole pine (Pinuscontorta Dougl.) were examined to determine rate of spread of blue stain fungi introduced by mountain pine beetle (Dendroctonusponderosae Hopk.). Trees were felled, dissected at 2.5-m intervals, and photographed at each cross section to determine area of stain. Rate of spread is so rapid that salvaging mountain pine beetle killed lodgepole pine prior to severe staining is difficult.


1962 ◽  
Vol 40 (4) ◽  
pp. 609-614 ◽  
Author(s):  
Robena C. Robinson

A complex of fungi was isolated from lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) at various stages of mountain pine beetle (Dendroctonus monticolae Hopk.) attack. Ceratocystis montia Rumb., Leptographium sp., Pichia pini (Hoist) Phaff, Hansenula holstii Wickerham, Hansenula capsulata Wickerham, and some unnamed yeasts were isolated from beetles, fresh galleries, and blue-stained sapwood. Perithecia of C. montia, Ceratocystis minor (Hedgc.) Hunt, Ceratocystis minuta (Siem.) Hunt, Ceratocystis sp., and Europhium sp. were found on the bark and sapwood of dead, blue-stained trees. Beetles are conclusively shown to be vectors of blue stain fungi. The known ranges of C. montia and P. pini are extended by this study and a possible succession of organisms associated with the development of beetle infestation is discussed.


1989 ◽  
Vol 121 (6) ◽  
pp. 521-523 ◽  
Author(s):  
A.J. Stock ◽  
R.A. Gorley

The mountain pine beetle, Dendroctonus ponderosae Hopk., causes extensive mortality of lodgepole pine, Pinus contorta var. latifolia Engelm., throughout western North America (Van Sickle 1982). The Prince Rupert Forest Region, in the northwest of British Columbia, initiated an aggressive beetle management program in 1981. Logging of infested stands, and winter felling and burning of individual infested trees are the most common direct control techniques.The “Bristol Lake” infestation developed in the Bulkley Forest District, approximately 55 km northwest of Smithers, B.C., on a steep rocky ridge within the valley of Harold Price Creek. The area contained large volumes of mature lodgepole pine, and control of the infestation was therefore considered critical to the local beetle management plan, but the size (50 ha) and rough topography of the infested area precluded normal direct control measures.


Sign in / Sign up

Export Citation Format

Share Document