Inoculation of lodgepole pine with four blue-stain fungi associated with mountain pine beetle, monitored by a heat pulse velocity (HPV) instrument

1990 ◽  
Vol 20 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Y. Yamaoka ◽  
R. H. Swanson ◽  
Y. Hiratsuka

In two separate experiments in the field, healthy 80-year-old lodgepole pine (Pinuscontorta Dougl. var. latifolia Engelm.) were inoculated with four blue-stain fungi that are associated with mountain pine beetle (Dendroctonusponderosae Hopk.) and beetle-attacked trees. Inocula of Ophiostomaclavigerum (Robins.-Jeff. & Davids.) Harrington, O, huntii (Robins.-Jeff.) de Hoog & Scheffer, O. montium (Rumb.) von Arx, and O. minus (Hedge.) H. & P. Sydow were prepared on sawdust media. Inoculum was placed under the bark in two areas (8 × 5 cm each), one above the other, separated by a 15-cm space in which heat pulse velocity (HPV) sensors were installed. HPVs in the inoculated trees were monitored daily for 4 weeks. In sections inoculated with O. clavigerum, HPVs were significantly reduced 10 to 13 days after inoculation in both experiments. Sapwood under the inoculated area was visibly altered and colonized by the fungus. The other three fungi did not significantly reduce HPVs. These results proved the capability of O. clavigerum to colonize functional sapwood and stop sap flow within a short period of time and reconfirmed the importance of this fungus in the mortality of trees attacked by mountain pine beetle.

1987 ◽  
Vol 65 (1) ◽  
pp. 95-102 ◽  
Author(s):  
H. S. Whitney ◽  
R. J. Bandoni ◽  
F. Oberwinkler

A new basidiomycete, Entomocorticium dendroctoni Whitn., Band. & Oberw., gen. et sp. nov., is described and illustrated. This cryptic fungus intermingles with blue stain fungi and produces abundant essentially sessile basidiospores in the galleries and pupal chambers of the mountain pine bark beetle (Dendroctonus ponderosae Hopkins Coleoptera: Scolytidae) in lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.). The insect apparently disseminates the fungus. Experimentally, young partially insectary reared adult beetles fed E. dendroctoni produced 19% more eggs than beetles fed the blue stain fungi.


2007 ◽  
Vol 85 (3) ◽  
pp. 316-323 ◽  
Author(s):  
A.V. Rice ◽  
M.N. Thormann ◽  
D.W. Langor

Mountain pine beetle (MPB) is the most serious pest of lodgepole pine in western Canada, and it is predicted to spread into boreal jack pine within the next few years. Colonization of host trees by MPB-associated blue-stain fungi appears to be required for successful beetle reproduction. Three species of blue-stain fungi, Grosmannia clavigera (Robinson-Jeffery and Davidson) Zipfel, de Beer, and Wingfield (≡ Ophiostoma clavigerum (Robinson-Jeffery and Davidson) Harrington), Ophiostoma montium (Rumbold) von Arx, and Leptographium longiclavatum Lee, Kim, and Breuil, are associated with MPB in Alberta. In inoculation experiments, all three fungi caused lesions on lodgepole pine, jack pine, and their hybrids. On average, lesions were longer on jack pine and hybrids than on lodgepole pine, suggesting that fungal development will not be a barrier to MPB success in these trees. Differences in lesion length caused by the three fungal species were minimal, with significant differences observed only on hybrid pine and between O. montium and the other fungal treatments. On average, lesions caused by combinations of the three fungi (pair-wise and all together) did not differ significantly in length from those caused by the fungi singly, and none of the fungal species competitively excluded any of the others. These observations suggest that all three species are pathogenic to boreal pines and that the virulence of all three species is comparable.


1979 ◽  
Vol 9 (3) ◽  
pp. 323-326 ◽  
Author(s):  
Robert D. Harvey Jr.

Recently killed lodgepole pine (Pinuscontorta Dougl.) were examined to determine rate of spread of blue stain fungi introduced by mountain pine beetle (Dendroctonusponderosae Hopk.). Trees were felled, dissected at 2.5-m intervals, and photographed at each cross section to determine area of stain. Rate of spread is so rapid that salvaging mountain pine beetle killed lodgepole pine prior to severe staining is difficult.


1995 ◽  
Vol 73 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Halvor Solheim

Invasion of lodgepole pine sapwood by blue-stain fungi was followed for 7 weeks after infestation by the mountain pine beetle, Dendroctonus ponderosae. During this period all sapwood was heavily stained blue and blue-stain fungi were always isolated close to the front of visible occlusion. Ophiostoma clavigerum and Ophiostoma montium were commonly isolated, both of which are known to be carried in the mycangia of the mountain pine beetle. Ophiostoma montium was most frequently isolated, but when both fungi were present O. clavigerum was always at the leading edge of fungal penetration. On average O. montium trailed 7.3 mm behind O. clavigerum. Other microorganisms were seldom isolated. Key words: lodgepole pine, Dendroctonus ponderosae, fungal succession, blue-stain fungi.


1962 ◽  
Vol 40 (4) ◽  
pp. 609-614 ◽  
Author(s):  
Robena C. Robinson

A complex of fungi was isolated from lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) at various stages of mountain pine beetle (Dendroctonus monticolae Hopk.) attack. Ceratocystis montia Rumb., Leptographium sp., Pichia pini (Hoist) Phaff, Hansenula holstii Wickerham, Hansenula capsulata Wickerham, and some unnamed yeasts were isolated from beetles, fresh galleries, and blue-stained sapwood. Perithecia of C. montia, Ceratocystis minor (Hedgc.) Hunt, Ceratocystis minuta (Siem.) Hunt, Ceratocystis sp., and Europhium sp. were found on the bark and sapwood of dead, blue-stained trees. Beetles are conclusively shown to be vectors of blue stain fungi. The known ranges of C. montia and P. pini are extended by this study and a possible succession of organisms associated with the development of beetle infestation is discussed.


1961 ◽  
Vol 37 (4) ◽  
pp. 368-375 ◽  
Author(s):  
R. W. Reid

The moisture content of the outer sapwood of non-infested lodgepole pine is normally about 85 to 165 per cent of oven dry weight. In trees that have been infested by the mountain pine beetle for one year, the sapwood moisture content can be as low as 16 per cent. There is a steep moisture gradient from about 160 per cent in the outer sapwood to about 30 per cent in the heart-wood. The moisture content in the centre is slightly higher than in the adjacent wood. In infested trees the sapwood moisture is greatly reduced within a year after the attack but moisture in the heartwood is not altered appreciably. Trees infested early in the season drop to a lower moisture content by fall than trees infested later in the season. In non-infested trees there is a diurnal and a seasonal moisture march; these do not occur in infested trees. The rapid moisture loss in the sapwood of infested trees is associated with blue-stain infection and successful establishment of bark-beetle broods


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 484 ◽  
Author(s):  
Javier Mercado ◽  
Beatriz Ortiz-Santana ◽  
Shannon Kay

The mite and fungal biota associated with the mountain pine beetle (MPB) (Dendroctonus ponderosae Hopk.) may not be stable throughout an irruptive event. In congeneric beetles, variations in the frequency of their associated organisms affect population trends and similar effects may occur in MPB. We studied fungi and mite trends in a declining irruptive MPB population as it attacked three different pine hosts in the Colorado Front Range. During the study, we found two new associates including one biologically relevant mite and one beneficial blue-stain fungus. Fungi hyperphoretic on mites were also documented. This included beneficial and potentially detrimental species to the MPB. The frequency of several organisms varied between some years or pine hosts but not within male or female beetles. A large increase of Trichouropoda sp. and T. ips mites trended inversely with the declining beetle population, while a decrease in the beneficial blue-stain fungi trended similarly to the declining beetle population. We discuss the interactions and potential effects of phoretic biota in relation to (1) the MPB associates’ population trends, (2) the MPB incursions into cooler areas, and (3) the redundancy of blue-stain fungi carried by the MPB holobiont. These findings increase our knowledge of the mechanisms that influence MPB populations.


Sign in / Sign up

Export Citation Format

Share Document