Interactions of wood decay fungi with other microorganisms, with emphasis on the degradation of cell walls

1995 ◽  
Vol 73 (S1) ◽  
pp. 1325-1333 ◽  
Author(s):  
A. Tsuneda ◽  
R. G. Thorn

Interactions of two wood decay fungi, Lentinula edodes and Pleurotus ostreatus, with other wood inhabiting microorganisms were investigated on agar and in fagaceous wood, primarily by scanning electron microscopy. Micromorphologically, there were two principal modes of cell wall degradation: (i) selective removal of amorphous wall components, followed by the degradation of skeletal microfibrils, and (ii) simultaneous degradation of all wall components. These two modes were observed in three different degradation systems: (i) sapwood wall degradation by the wood decay fungi, (ii) hyphal wall degradation by mycoparasitic Trichoderma, and (iii) hyphal wall degradation by pathogenic bacteria. The simultaneous-type wall degradation in the systems i and ii was usually caused by hyphal tips. In addition to the three systems, bacteriolysis by the wood decay fungi was also studied. The bacterial cell walls, as well as microfibril bundles of wood cellulose and fungal chitin, were all fragmented into minute granules at later stages of microbial degradation and the granules were further degraded into smaller units. Frequency of occurrence and strength of mycoparasitic activity of Trichoderma harzianum were influenced by the degree of wood decay where the interaction occurred. Presence of both cellulose and chitin microfibrils apparently enhanced the mycoparasitic activity. In Quercus wood, P. ostreatus showed a unidirectional growth toward bacterial colonies, which formed as the result of decomposition of dead nematodes, and consumed the unidentified bacteria. In nitrogen-deficient wood, fungal and bacterial cell walls may serve as an important reservoir of nitrogen for wood inhabiting microorganisms. Key words: wood decay, mycoparasitism, bacteriolysis, cellulose, chitin.

Holzforschung ◽  
1983 ◽  
Vol 37 (5) ◽  
pp. 255-259 ◽  
Author(s):  
Bruce R. Johnson ◽  
George C. Chen

2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Barry Goodell ◽  
Yuan Zhu ◽  
Seong Kim ◽  
Kabindra Kafle ◽  
Daniel Eastwood ◽  
...  

1968 ◽  
Vol 243 (11) ◽  
pp. 3169-3179 ◽  
Author(s):  
D J Tipper ◽  
J L Strominger

1981 ◽  
Vol 256 (17) ◽  
pp. 9229-9234
Author(s):  
E Benedetti ◽  
B Di Blasio ◽  
V Pavone ◽  
C Pedone ◽  
C Toniolo ◽  
...  

1970 ◽  
Vol 245 (14) ◽  
pp. 3675-3682
Author(s):  
Roland Plapp ◽  
Jack L. Strominger

Author(s):  
Cédric Cabral Almada ◽  
Mathilde Montibus ◽  
Frédérique Ham-Pichavant ◽  
Sandra Tapin-Lingua ◽  
Gilles Labat ◽  
...  

1966 ◽  
Vol 116 ◽  
pp. 487-515 ◽  
Author(s):  
John S. Anderson ◽  
Pauline M. Meadow ◽  
Mary A. Haskin ◽  
Jack L. Strominger

1991 ◽  
Vol 260 (1) ◽  
pp. R126-R133 ◽  
Author(s):  
L. Johannsen ◽  
J. Wecke ◽  
F. Obal ◽  
J. M. Krueger

Muramyl peptides have a variety of biological effects in mammals, including enhancement of the immune response, sleep, and body temperature. Although mammals lack biosynthetic pathways for muramyl peptides, they are found in mammals and are well known as components of bacterial cell walls. This suggests that phagocytic mammalian cells digest bacterial cell walls and produce biologically active muramyl peptides. Staphylococcal cell walls were radioactively labeled during growth of the bacteria. During the digestion of these radiolabeled bacteria, murine bone marrow macrophages produced low-molecular-weight substances that coeluted chromatographically with the radioactive cell wall marker. Further separation of these substances using reversed-phase high-performance liquid chromatography resulted in the isolation of substances with high specific biological activity. Intracerebroventricular injection of rabbits with these substances induced an increase in slow-wave sleep and body temperature and a suppression of rapid-eye-movement sleep. The characteristics of the biological responses and the chromatographic behavior of the active components are consistent with those of muramyl peptides. The ability of macrophages to tailor muramyl peptides from peptidoglycan may provide an amplification step for the immune response. Muramyl peptides released by macrophages may also act as mediators for various facets of the acute phase response elicited by bacterial infections such as fever and sleep.


Sign in / Sign up

Export Citation Format

Share Document