Host-parasite relationships in bean cultivars of varying susceptibility to bean rust

2000 ◽  
Vol 77 (11) ◽  
pp. 1551-1559 ◽  
Author(s):  
M W Harding ◽  
J C Stutz ◽  
R W Roberson

Components of disease development were measured in three cultivars of Phaseolus vulgaris L. (common bean) infected with Uromyces appendiculatus (Pers.:Pers.) Unger (bean rust fungus) race O. Disease measurements and light and electron microscope data of host-parasite relationships were obtained and analyzed. Uredinial size, infection efficiency, latent period, and fungal colony radius were measured from infected bean leaves that were grown under controlled conditions. Phaseolus vulgaris cultivar Pinto 111, a highly susceptible check, displayed the largest uredinia, the highest infection efficiency, large colony radii, and a short latent period. Cultivars Early Gallatin and Kentucky Wonder (K.W.) 814 displayed moderate and low susceptibility, respectively. Cultivar Early Gallatin had smaller uredinia, reduced infection efficiency, and longer latent period when compared with cv. Pinto 111. Cultivar K.W. 814 was characterized by minute pustules, restricted colony expansion, and the longest latent period. Ultrastructural data of host-parasite relationships were collected from infected leaf tissues and prepared for transmission electron microscopy by high-pressure cryofixation and freeze substitution. In 'Pinto 111' the collars around haustorial necks were composed of a fibrillar network embedded in an electron transparent matrix. Ultrastructural observations indicated that Cultivars K.W. 814 and Early Gallatin deposited more collar material than 'Pinto 111.' Networks of tubular endomembranes developed near the host-parasite interface in the host cytoplasm of cultivars K.W. 814 and Early Gallatin. The tubules showed continuity with the extrahaustorial membrane and contained an amorphous, electron-dense material in the lumen. Tubular endomembranes were not seen in the highly susceptible cultivar Pinto 111.


Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Craig M. Sandlin ◽  
James R. Steadman ◽  
Carlos M. Araya ◽  
Dermot P. Coyne

Five isolates of the bean rust fungus Uromyces appendiculatus were shown to be specifically virulent on bean genotypes of Andean origin. This specificity was demonstrated by the virulence of five pairs of isolates on a differential set of 30 Phaseolus vulgaris landraces. Each isolate pair was from a different country in the Americas and consisted of one Andean-specific isolate and one nonspecific isolate. Of the differential P. vulgaris landraces, 15 were of Middle American origin and 15 were of Andean origin. The Andean-specific rust isolates were highly virulent on Andean landraces but not on landraces of Middle American origin. Rust isolates with virulence to Middle American landraces were also generally virulent on Andean material; no truly Middle American-specific isolates were found. Random amplified polymorphic DNA (RAPD) analysis of the rust isolates also distinguished the two groups. Four of the Andean-specific rust isolates formed a distinct group compared to four of the nonspecific isolates. Two of the isolates, one from each of the two virulence groups, had intermediate RAPD banding patterns, suggesting that plasmagomy but not karyogamy occurred between isolates of the two groups.



1984 ◽  
Vol 62 (10) ◽  
pp. 2003-2010 ◽  
Author(s):  
R. E. Gold ◽  
K. Mendgen

The morphology of intercellular and intracellular hyphae derived from basidiospores of Uromyces appendiculatus var. appendiculatus is described. Light and electron microscopic observations of the bean rust fungus were made on susceptible leaves of Phaseolus vulgaris from 3 to 10 days after inoculation. Following egress from invaded epidermal and palisade parenchyma cells, the fungus grew rapidly and developed extensive intercellular mycelium. An amorphous to fibrillar extracellular matrix was deposited between fungal and host cell walls. Intercellular hyphae grew closely appressed to the mesophyll cells and penetrated them to form intracellular hyphae from either a terminal or nonterminal mother cell. Intracellular hyphae were fingerlike, sometimes septate, and generally remained terminal in the invaded mesophyll cell. Occasionally the fungus exited the cell to become an intercellular hypha or an intracellular hypha in an adjacent host cell. The plant rarely exhibited a resistantlike reaction at sites of penetration into mesophyll cells.



Author(s):  
Robert W. Roberson

The use of cryo-techniques for the preparation of biological specimens in electron microscopy has led to superior preservation of ultrastructural detail. Although these techniques have obvious advantages, a critical limitation is that only 10-40 μm thick cells and tissue layers can be frozen without the formation of distorting ice crystals. However, thicker samples (600 μm) may be frozen well by rapid freezing under high-pressure (2,100 bar). To date, most work using cryo-techniques on fungi have been confined to examining small, thin-walled structures. High-pressure freezing and freeze substitution are used here to analysis pre-germination stages of specialized, sexual spores (teliospores) of the plant pathogenic fungus Gymnosporangium clavipes C & P.Dormant teliospores were incubated in drops of water at room temperature (25°C) to break dormancy and stimulate germination. Spores were collected at approximately 30 min intervals after hydration so that early cytological changes associated with spore germination could be monitored. Prior to high-pressure freezing, the samples were incubated for 5-10 min in a 20% dextran solution for added cryoprotection during freezing. Forty to 50 spores were placed in specimen cups and holders and immediately frozen at high pressure using the Balzers HPM 010 apparatus.



1994 ◽  
Vol 124 (2) ◽  
pp. 341-350 ◽  
Author(s):  
B R EDINGTON ◽  
P E SHANAHAN ◽  
F H J RIJKENBERG


1996 ◽  
Vol 29 (2) ◽  
pp. 159-167 ◽  
Author(s):  
J. P. Martinez ◽  
J. V. Groth ◽  
N. D. Young


1991 ◽  
Vol 39 (6) ◽  
pp. 527 ◽  
Author(s):  
KS Braithwaite ◽  
JM Manners ◽  
DJ Maclean ◽  
JAG Irwin

Rust disease on the tropical pasture legume Macroptilium atropurpureum (siratro) is caused by Uromyces appendiculatus var. crassitunicatus. This pathogen was believed to be closely related to the bean (Phaseolus vulgaris) rust pathogen Uromyces appendiculatus var. appendiculatus. The genetic relationship between these two fungi was investigated. Total DNA hybridisations indicated that little homology exists between the high copy genomic DNA of these two rust fungi. Random genomic probes cloned from the bean rust fungus detected extensive Polymorphisms between the two, with only one probe from 17 being monomorphic. The ribosomal DNA repeat unit was also distinguished by RFLPs. It was calculated from the RFLP data that the bean rust fungus and the siratro rust fungus share only 8-14% sequence homology. The results indicate that the two fungi, although morphologically very similar, are not closely related genetically.





1975 ◽  
Vol 53 (9) ◽  
pp. 921-928 ◽  
Author(s):  
James E. Rahe ◽  
Robert M. Arnold

Phaseollin accumulated locally at point-freezing injuries on hypocotyls of intact etiolated seedlings of Phaseolus vulgaris. Maximum amounts occurred within 24 to 30 h after injury. Smaller amounts accumulated at similar sites on hypocotyls excised at the time point-freezing injuries were made, and the accumulation was less localized. Increasing amounts of phaseollin occurred at sites increasingly distant from the cotyledonary nodes in both intact and excised hypocotyls. Much higher levels of phaseollin were elicited by excision per se than by point-freezing. Phaseollin was not detected after freezing of whole hypocotyls, indicating that living tissue adjacent to injuries is required for accumulation. The data are discussed in relation to host–parasite specificity, with particular reference to the interaction between P. vulgaris and Colletotrichum lindemuthianum.



Heredity ◽  
1995 ◽  
Vol 75 (3) ◽  
pp. 234-242 ◽  
Author(s):  
James V Groth ◽  
John W McCain ◽  
Alan P Roelfs


2005 ◽  
Vol 18 (11) ◽  
pp. 1130-1139 ◽  
Author(s):  
Eric Kemen ◽  
Ariane C. Kemen ◽  
Maryam Rafiqi ◽  
Uta Hempel ◽  
Kurt Mendgen ◽  
...  

The formation of haustoria is one of the hallmarks of the interaction of obligate biotrophic fungi with their host plants. In addition to their role in nutrient uptake, it is hypothesized that haustoria are actively involved in establishing and maintaining the biotrophic relationship. We have identified a 24.3-kDa protein that exhibited a very unusual allocation. Rust transferred protein 1 from Uromyces fabae (Uf-RTP1p) was not only detected in the host parasite interface, the extrahaustorial matrix, but also inside infected plant cells by immunofluorescence and electron microscopy. Uf-RTP1p does not exhibit any similarity to sequences currently listed in the public databases. However, we identified a homolog of Uf-RTP1p in the related rust fungus Uromyces striatus (Us-RTP1p). The localization of Uf-RTP1p and Us-RTP1p inside infected plant cells was confirmed, using four independently raised polyclonal antibodies. Depending on the developmental stage of haustoria, Uf-RTP1p was found in increasing amounts in host cells, including the host nucleus. Putative nuclear localization signals (NLS) were found in the predicted RTP1p sequences. However, functional efficiency could only be verified for the Uf-RTP1p NLS by means of green fluorescent protein fusions in transformed tobacco protoplasts. Western blot analysis indicated that Uf-RTP1p and Us-RTP1p most likely enter the host cell as N-glycosylated proteins. However, the mechanism by which they cross the extrahaustorial membrane and accumulate in the host cytoplasm is unknown. The localization of RTP1p suggests that it might play an important role in the maintenance of the biotrophic interaction.



Sign in / Sign up

Export Citation Format

Share Document