etiolated seedlings
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 15)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 22 (24) ◽  
pp. 13588
Author(s):  
Huachun Sheng ◽  
Shuangxi Zhang ◽  
Yanping Wei ◽  
Shaolin Chen

In plants, seedling growth is subtly controlled by multiple environmental factors and endogenous phytohormones. The cross-talk between sugars and brassinosteroid (BR) signaling is known to regulate plant growth; however, the molecular mechanisms that coordinate hormone-dependent growth responses with exogenous sucrose in plants are incompletely understood. Skotomorphogenesis is a plant growth stage with rapid elongation of the hypocotyls. In the present study, we found that low-concentration sugars could improve skotomorphogenesis in a manner dependent on BR biosynthesis and TOR activation. However, accumulation of BZR1 in bzr1-1D mutant plants partially rescued the defects of skotomorphogenesis induced by the TOR inhibitor AZD, and these etiolated seedlings displayed a normal phenotype like that of wild-type seedlings in response to both sucrose and non-sucrose treatments, thereby indicating that accumulated BZR1 sustained, at least partially, the sucrose-promoted growth of etiolated seedlings (skotomorphogenesis). Moreover, genetic evidence based on a phenotypic analysis of bin2-3bil1bil2 triple-mutant and gain-of-function bin2–1 mutant plant indicated that BIN2 inactivation was conducive to skotomorphogenesis in the dark. Subsequent biochemical and molecular analyses enabled us to confirm that sucrose reduced BIN2 levels via the TOR–S6K2 pathway in etiolated seedlings. Combined with a determination of the cellulose content, our results indicated that sucrose-induced BIN2 degradation led to the accumulation of BZR1 and the enhancement of cellulose synthesis, thereby promoting skotomorphogenesis, and that BIN2 is the converging node that integrates sugar and BR signaling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Jian Shao ◽  
Qiao-Yun Zhu ◽  
Zi-Wei Yao ◽  
Jian-Xiang Liu

Plants rapidly adapt to elevated ambient temperature by adjusting their growth and developmental programs. To date, a number of experiments have been carried out to understand how plants sense and respond to warm temperatures. However, how warm temperature signals are relayed from thermosensors to transcriptional regulators is largely unknown. To identify new early regulators of plant thermo-responsiveness, we performed phosphoproteomic analysis using TMT (Tandem Mass Tags) labeling and phosphopeptide enrichment with Arabidopsis etiolated seedlings treated with or without 3h of warm temperatures (29°C). In total, we identified 13,160 phosphopeptides in 5,125 proteins with 10,700 quantifiable phosphorylation sites. Among them, 200 sites (180 proteins) were upregulated, while 120 sites (87 proteins) were downregulated by elevated temperature. GO (Gene Ontology) analysis indicated that phosphorelay-related molecular function was enriched among the differentially phosphorylated proteins. We selected ATL6 (ARABIDOPSIS TOXICOS EN LEVADURA 6) from them and expressed its native and phosphorylation-site mutated (S343A S357A) forms in Arabidopsis and found that the mutated form of ATL6 was less stable than that of the native form both in vivo and in cell-free degradation assays. Taken together, our data revealed extensive protein phosphorylation during thermo-responsiveness, providing new candidate proteins/genes for studying plant thermomorphogenesis in the future.


2021 ◽  
Vol 29 ◽  
pp. 179-184
Author(s):  
O. O. Avksentieva ◽  
E.D. Batueva

Aim. Study of the effect of red (660 nm), green (530 nm) and blue (450 nm) light on the growth processes and the state of the antioxidant system in the axial organs of seedlings of pea plants. Methods. Etiolated seedlings of pea Maecenat variety were irradiated with selective light with different spectrum of RL (660 nm), GL (530 nm), BL (450 nm) to activate photoreceptor systems of plants. In 10-day-old seedlings, growth response was determined – linear growth and biomass accumulation, as well as indicators of antioxidant system – hydrogen peroxide content and activity of oxidases – catalase and nonspecific peroxidase in axial organs of seedlings: in the aboveground part and roots. Results. Irradiation of the RL and the GL stimulates the accumulation of seedling biomass in the aboveground part and roots. BL inhibits the growth response of seedlings. The maximum stimulating effect is shown by the GL. The state of the antioxidant system in etiolated seedlings is characterized by organ specificity. Under the action of selective light, the content of the main form of ROS – hydrogen peroxide and shoots and in the roots, significantly stimulates the activity of catalase and peroxidase enzymes in the aboveground part of the seedling and is inhibited in the roots. The maximum effect in the aboveground part is shown by the GL, in the roots of the RL and the BL. Conclusions. The established effects of selective light irradiation are manifested differently in the aboveground and underground parts of seedlings. Possible mechanisms of connection of a condition of antioxidant system with separate aspects of signaling in photomorphogenesis of plants are discussed. Keywords: Pisum sativum L., selective light, RL (660 nm), GL (530 nm), BL (450 nm), growth reaction, axial organs, H2O2, catalase, peroxidase.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1746
Author(s):  
Tzan-Chain Lee ◽  
Kuan-Hung Lin ◽  
Meng-Yuan Huang ◽  
Chi-Ming Yang

In addition to angiosperms, most plants are able to synthesize chlorophyll (Chl)-generating green tissues in total darkness. In this study, 140 plants of the angiosperm Pachira macrocarpa were divided into five groups. Among them, one group was grown for 2 weeks under natural light conditions, whereas the others were grown in complete darkness (0 μmol m−2 s−1). Dark-grown plants were then treated with 0~6% glucose for another 8 weeks. The budding and greening ratios, ultrastructure of chloroplasts (ChlPs) of newly developed leaves, and green pigment contents of pre-illuminated mature and young leaves, and totally dark-grown newly developed leaves were measured. Results showed that glucose inhibited the budding and promoted the greening of newly developed leaves. Pre-illuminated mature and young leaves were able to synthesize green pigments during the 2 weeks of dark adaption. Dark-grown newly developed leaves contained high levels of green pigments at 2 and 3 weeks after budding. Green pigments of glucose-fed newly developed leaves had increased, whereas they had decreased in control leaves. In addition, ChlPs of dark-grown glucose-fed newly developed leaves contained both giant grana and prolamellar bodies (PLBs), usually found in shade plants and etiolated seedlings, respectively. The higher the glucose concentration was, the greater the numbers of grana, thylakoids, and PLBs. Glucose increased the green pigment contents and grana formation in newly developed leaves in a dark condition, and the mechanisms are discussed.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 626
Author(s):  
Yueya Zhang ◽  
Haifeng Yan ◽  
Yuan Li ◽  
Yuping Xiong ◽  
Meiyun Niu ◽  
...  

Sandalwood (Santalum album L.) heartwood-derived essential oil contains a high content of sesquiterpenoids that are economically highly valued and widely used in the fragrance industry. Sesquiterpenoids are biosynthesized via the mevalonate acid and methylerythritol phosphate (MEP) pathways, which are also the sources of precursors for photosynthetic pigments. 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is a secondary rate-limiting enzyme in the MEP pathway. In this paper, the 1416-bp open reading frame of SaDXR and its 897-bp promoter region, which contains putative conserved cis-elements involved in stress responsiveness (HSE and TC-rich repeats), hormone signaling (abscisic acid, gibberellin and salicylic acid) and light responsiveness, were cloned from 7-year-old S. album trees. A bioinformatics analysis suggested that SaDXR encodes a functional and conserved DXR protein. SaDXR was widely expressed in multiple tissues, including roots, twigs, stem sapwood, leaves, flowers, fruit and stem heartwood, displaying significantly higher levels in tissues with photosynthetic pigments, like twigs, leaves and flowers. SaDXR mRNA expression increased in etiolated seedlings exposed to light, and the content of chlorophylls and carotenoids was enhanced in all 35S::SaDXR transgenic Arabidopsis thaliana lines, consistent with the SaDXR expression level. SaDXR was also stimulated by MeJA and H2O2 in seedling roots. α-Santalol content decreased in response to fosmidomycin, a DXR inhibitor. These results suggest that SaDXR plays an important role in the biosynthesis of photosynthetic pigments, shifting the flux to sandalwood-specific sesquiterpenoids.


2021 ◽  
Vol 36 ◽  
pp. 02003
Author(s):  
E.A. Builova ◽  
A.K. Mazitova ◽  
G.K. Aminova ◽  
I.I. Zaripov ◽  
A.H. Alibakova

The article considers the application of plant growth and development regulators, in particular, derivatives of asymmetric triazines. A method for obtaining hexahydro-1,2,4-triazinone-3 is given. Optimal conditions for the reaction of 1,2-dichloroethane with semicarbazide are determined: reaction time, process temperature, and the effect of solvents on the yield of the target product. The results of laboratory and vegetation tests of 1,2,4-triazinone-3 for biological activity are presented. Laboratory studies were carried out on seeds of wheat, cucumbers, radish and vetch, which were laid out in Petri dishes and poured with a working solution, the concentration of the drug is 1, 10 mg/l. Two days later, the length and weight of etiolated seedlings were determined. Vegetation tests were carried out on seeds of barley, wheat and rye with a concentration of 10 mg/l. After two weeks, the length and weight of the plants were measured.


2020 ◽  
Author(s):  
Taro Kimura ◽  
Ken Haga ◽  
Yuko Nomura ◽  
Takumi Higaki ◽  
Hirofumi Nakagami ◽  
...  

ABSTRACTPhotosensory adaptation, which can be classified as sensor or effector adaptation, optimizes the light sensing of living organisms by tuning their sensitivity to changing light conditions. During the phototropic response in Arabidopsis (Arabidopsis thaliana), the light-dependent expression controls of blue-light photoreceptor phototropin1 (phot1) and its modulator ROOT PHOTOTROPISM2 (RPT2) are known as the molecular mechanisms underlying sensor adaptation. However, little is known about effector adaption in plant phototropism. Here we show that control of the phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) leads to effector adaptation in hypocotyl phototropism. We identified seven phosphorylation sites of NPH3 proteins in the etiolated seedlings of Arabidopsis and generated unphosphorable and phosphomimetic NPH3 proteins on those sites. Unphosphorable NPH3 showed a shortening of its subcellular localization in the cytosol and caused an inability to adapt to very low fluence rates of blue light (∼10−5 µmol m−2 s−1) during the phototropic response. In contrast, the phosphomimetic NPH3 proteins had a lengthened subcellular localization in the cytosol and could not lead to the adaptation for blue light at fluence rates of 10−3 µmol m−2 s−1 or more. Our results suggest that the activation levels of phot1 and the corresponding phosphorylation levels of NPH3 determine the rate of plasma membrane-cytosol shuttling of NPH3, which moderately maintains the active state of phot1 signaling across a broad range of blue-light intensities and contributes to the photosensory adaptation of phot1 signaling during the phototropic response in hypocotyls.One sentence summaryThe phosphorylation status of NON-PHOTOTROPIC HYPOCOTYL3 proteins affects their subcellular localization and the photosensory adaptation of phot1 signaling.


2020 ◽  
pp. 1-12
Author(s):  
Tianliang Wang ◽  
Shuo Wang ◽  
Jinhao Zhang ◽  
Fan Yan ◽  
Yajing Liu ◽  
...  

Skotomorphogenesis occurs after germination and before excavation in plants. It inhibits excessive absorbed energy in cells and can prevent the lethal photooxidative damage caused by transitioning from skotomorphogenesis to photomorphogenesis for light energy utilization. To investigate the mechanisms underlying photoreactions in soybean [Glycine max (L.) Merr.], we identified and isolated soybean phytochrome-interaction factor 1 (GmPIF1). A yeast two-hybrid (Y2H) assay showed that GmPIF1 interacted with photoactive PHYTOCHROME A (PHYA) and B (PHYB) in both soybean and Arabidopsis (GmPHYA, GmPHYB, AtPHYA, and AtPHYB). To analyze its function, we ectopically over-expressed GmPIF1 in wild type and pif1 mutant Arabidopsis. In etiolated seedlings, GmPIF1 caused hypocotyl elongation, cotyledon closed, apical hooks folded, and less accumulation of protochlorophyllide. In Y2H, GmPIF1 interacted with AtHDA15 that inhibited chlorophyll synthesis under dark conditions. After transition from darkness to white light, GmPIF1 promotes the reduction of photobleaching and induced de-etiolation. Moreover, GmPIF1 inhibited PHYA- and PHYB-mediated seed germination. Our findings increase our understanding of the regulatory network of light response in soybean and provide useful gene resources for soybean breeding in programs and genetics engineering.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 590 ◽  
Author(s):  
Takayuki Hattori ◽  
Yasuhiro Otomi ◽  
Yohei Nakajima ◽  
Kouichi Soga ◽  
Kazuyuki Wakabayashi ◽  
...  

Plants respond to and resist gravitational acceleration, but the mechanism of signal perception in the response is unknown. We studied the role of MCA (mid1-complementing activity) proteins in gravity perception by analyzing the expression of the MCA1 and MCA2 genes, and the growth of hypocotyls of mca mutants, under hypergravity conditions in the dark. An MCA1 promoter::GUS fusion reporter gene construct (MCA1p::GUS) and MCA2p::GUS were expressed almost universally in etiolated seedlings. Under hypergravity conditions, the expression levels of both genes increased compared with that under the 1 g condition, and remained higher, especially in the basal supporting region. On the other hand, mca-null and MCA-overexpressing seedlings showed normal growth under the 1 g condition. Hypergravity suppressed elongation growth of hypocotyls, but this effect was reduced in hypocotyls of mca-null mutants compared with the wild type. In contrast, MCA-overexpressing seedlings were hypersensitive to increased gravity; suppression of elongation growth was detected at a lower gravity level than that in the wild type. These results suggest that MCAs are involved in the perception of gravity signals in plants, and may be responsible for resistance to hypergravity.


Sign in / Sign up

Export Citation Format

Share Document