Adipocyte factor CTRP6 inhibits homocysteine-induced proliferation, migration, and dedifferentiation of vascular smooth muscle cells through PPARγ/NLRP3

2021 ◽  
pp. 1-10
Author(s):  
JiLi Liu ◽  
XiaoNing Yan ◽  
ZhaoLin Wang ◽  
Na Zhang ◽  
AnHua Lin ◽  
...  

NLRP3 and PPARγ play important roles in the development of atherosclerosis (AS). Studies have shown that PPARγ regulates the expression of NLRP3 in vascular diseases. In addition, the adipocyte factor CTRP6 can improve the activation of PPARγ in vascular diseases. However, the regulatory relationship between CTRP6, PPARγ, and NLRP3 in AS and its underlying mechanism have not been reported. Since proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) are key events in AS, in this study, we induced proliferation, migration, and dedifferentiation of VSCMs through homocysteine (HCY) to detect the specific effects of CTRP6, PPARγ, and NLRP3. Subsequently, CTRP6 was overexpressed and the PPARγ inhibitor GW9662 and agonist rosiglitazone were administered to HCY-induced VSCMs to investigate the mechanisms. The results show that the expression of CTRP6 decreased in HCY-induced VSMCs. In addition, CTRP6 overexpression inhibited the proliferation and migration of HCY-induced VSMCs, as well as cell cycle acceleration and dedifferentiation. Overexpression of CTRP6 increased HCY-induced PPARγ expression and inhibited NLRP3 expression. The addition of GW9662 and rosiglitazone further demonstrated that overexpression of CTRP6 inhibited HCY-induced VSMC proliferation, migration, and dedifferentiation through PPARγ/NLRP3 signaling. In conclusion, CTRP6 inhibited HCY-induced proliferation, migration, and dedifferentiation of VSMCs through PPARγ/NLRP3.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Baoliang Zhu ◽  
Jing Liu ◽  
Ying Zhao ◽  
Jing Yan

Coronary heart disease (CHD) is the most common cardiovascular disease with high prevalence, disability, and mortality. The balance between proliferation and apoptosis of vascular smooth muscle cells (VSMCs) plays a key role in the initiation of atherosclerosis. In this study, we found a significant decrease in the expression of lncRNA-SNHG14 in atherosclerotic plaque tissues of ApoE-/- mice. Overexpression of lncRNA-SNHG14 can inhibit VSMC proliferation while promoting apoptosis. There is a potential reciprocal regulatory relationship between lncRNASNHG14 and miR-19a-3p, which inhibit each other’s expression in vascular smooth muscle cells. In addition, the luciferase reporter gene analysis results showed that there was a direct interaction between miR-19a-3p and the 3′UTR of RORα. The results of qRT-PCR showed that the level of RORα mRNA was significantly increased in the aortas treated with miR-19a-3p and SNHG14 compared with that treated with miR-19a-3p alone. In conclusion, we demonstrated that lncRNA-SNHG14 regulates the apoptosis/proliferation balance of VSMCs in atherosclerosis.


2010 ◽  
Vol 65 (5) ◽  
pp. 507-514 ◽  
Author(s):  
Zhigang Ma ◽  
Hao Wang ◽  
Liang Wu ◽  
Lei Zhu ◽  
Weihao Shi ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zaixiong Ji ◽  
Jiaqi Li ◽  
Jianbo Wang

The uncontrolled proliferation and migration of vascular smooth muscle cells is a critical step in the pathological process of restenosis caused by vascular intimal hyperplasia. Jujuboside B (JB) is one of the main biologically active ingredients extracted from the seeds of Zizyphus jujuba (SZJ), which has the properties of anti-platelet aggregation and reducing vascular tension. However, its effects on restenosis after vascular intervention caused by VSMCs proliferation and migration remain still unknown. Herein, we present novel data showing that JB treatment could significantly reduce the neointimal hyperplasia of balloon-damaged blood vessels in Sprague-Dawley (SD) rats. In cultured VSMCs, JB pretreatment significantly reduced cell dedifferentiation, proliferation, and migration induced by platelet-derived growth factor-BB (PDGF-BB). JB attenuated autophagy and reactive oxygen species (ROS) production stimulated by PDGF-BB. Besides, JB promoted the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ). Notably, inhibition of AMPK and PPAR-γ partially reversed the ability of JB to resist the proliferation and migration of VSMCs. Taken as a whole, our findings reveal for the first time the anti-restenosis properties of JB in vivo and in vitro after the endovascular intervention. JB antagonizes PDGF-BB-induced phenotypic switch, proliferation, and migration of vascular smooth muscle cells partly through AMPK/PPAR-γ pathway. These results indicate that JB might be a promising clinical candidate drug against in-stent restenosis, which provides a reference for further research on the prevention and treatment of vascular-related diseases.


Sign in / Sign up

Export Citation Format

Share Document