Use of recycled crushed concrete and Secudrain in capillary barriers for slope stabilization

2013 ◽  
Vol 50 (6) ◽  
pp. 662-673 ◽  
Author(s):  
H. Rahardjo ◽  
V.A. Santoso ◽  
E.C. Leong ◽  
Y.S. Ng ◽  
C.P.H. Tam ◽  
...  

A capillary barrier is a two-layer cover system having distinct hydraulic properties to minimize water infiltration into the underlying soil by utilizing unsaturated soil mechanics principles. In this study, a capillary barrier system was designed as a cover system for a residual soil slope to maintain stability of the slope by minimizing infiltration during heavy rainfalls in the tropics. The capillary barrier system (CBS) was constructed using fine sand as the fine-grained layer and recycled crushed concrete aggregates as the coarse-grained layer. The coarse-grained layer is commonly constructed using gravels or granite chips. However, due to scarcity of aggregates and in consideration of environmental sustainability, recycled crushed concrete aggregates were used as the coarse-grained layer in this project. The suitability of recycled crushed concrete aggregates as a material within the coarse-grained layer of a CBS is subject to the hydraulic property requirement. For comparison, another CBS was constructed using fine sand as the fine-grained layer and a geosynthetic (Secudrain) as the coarse-grained layer. The performance of each constructed CBS on the residual soil slope was monitored using tensiometers installed at different depths — from 0.6 to 1.8 m below the slope surface — and a rainfall gauge mounted on the slope. An adjacent original slope without the CBS was also instrumented using tensiometers and piezometers to investigate the performance and effectiveness of the CBS in reducing rainwater infiltration and maintaining negative pore-water pressures in the slope. Real-time monitoring systems were developed to examine pore-water pressure, rainfall, and groundwater level in the slopes over a 1 year period. Characteristics of pore-water pressure distributions in the residual soil slope under a CBS with recycled crushed concrete aggregates and in the original slope during typical rainfalls are highlighted and compared. The measurement results show that the CBS was effective in minimizing rainwater infiltration and therefore, maintaining stability of the slope.

2005 ◽  
Vol 42 (2) ◽  
pp. 340-351 ◽  
Author(s):  
H Rahardjo ◽  
T T Lee ◽  
E C Leong ◽  
R B Rezaur

Rainfall-induced landslides are a common problem in residual soil slopes of the tropics. It is widely known that rainfall-induced slope failures are mainly caused by infiltration of rainwater; however, the response of a residual soil slope to infiltration is not fully understood. The difficulties lie in the quantification of the flux boundary condition across the slope surface with respect to infiltration and its effect on the pore-water pressure conditions in the slope. Therefore, it is important to understand the response of a slope to different rainfall conditions and the resulting changes in pore-water pressures and water contents. A residual soil slope in Singapore was instrumented with pore-water pressure, water content, and rainfall measuring devices, and studies were carried out under natural and simulated rainfalls. Results indicate that significant infiltration may occur in a residual soil slope during a rainfall. Small total rainfalls can contribute a larger infiltration percentage than large total rainfalls. The percentage of infiltration usually decreases with increasing total rainfalls. The study has indicated the existence of a threshold rainfall of about 10 mm for runoff generation to commence. Infiltration during wet periods may lead to the development of positive pore-water pressures as a consequence of a perched water table condition. Matric suctions are recovered gradually during dry periods due to redistribution. Soil water contents tend to be higher near the toe of the slope than at the crest irrespective of rainfall events, indicating subsurface movement of water in the downslope direction. The study has also indicated a correlation between rainfall amount and relative increase in pore-water pressure. The results can be used to quantify the flux boundary conditions required for the seepage analyses associated with rainfall-induced slope failures.Key words: infiltration, pore-water pressure, water content, residual soil, rainfall-induced slope failures.


1996 ◽  
Vol 33 (4) ◽  
pp. 618-628 ◽  
Author(s):  
T T Lim ◽  
H Rahardjo ◽  
M F Chang ◽  
D G Fredlund

A slope stability study involving shallow slip surfaces should include the effect of negative pore-water pressures in a slope. A field instrumentation program was carried out to monitor negative pore-water pressure (i.e., in situ matric suction) in a residual soil slope in Singapore. Variations in matric suction and the matric suction profiles under (1) a canvas-convered grassed surface, (2) a grassed surface, and (3) a bare ground surface, in response to rainfalls were investigated. Changes in matric suction due to changes in climatic conditions decrease rapidly with depth. The change was found to be most significant in the bare slope and least significant under the canvas-covered slope. The amount of decrease in matric suction after a rainstorm was observed to be a function of the initial matric suction just prior to the rainstorm. Positive pore-water pressures were observed above the groundwater table, suggesting the development of a perched water table within the slope. These observations are also typical of other regions experiencing high seasonal rainfalls. The field monitoring program presented can be adopted for investigating rainfall-induced landslides in other parts of the world. Key words: matric suction, negative pore-water pressure, field instrumentation, rainfall, residual soil, slope stability.


2003 ◽  
Vol 40 (5) ◽  
pp. 1012-1032 ◽  
Author(s):  
Illias Tsaparas ◽  
Harianto Rahardjo ◽  
David G Toll ◽  
Eng-Choon Leong

This paper presents the analysis of a 12 month long field study of the infiltration characteristics of two residual soil slopes in Singapore. The field measurements consist of rainfall data, runoff data of natural and simulated rainfall events, and pore-water pressure changes during infiltration at several depths and at several locations on the two slopes. The analysis of the field measurements identifies the total rainfall and the initial pore-water pressures within the two slopes as the controlling parameters for the changes in the pore-water pressures within the slopes during infiltration.Key words: infiltration, rainfall, runoff, pore-water pressure, field measurements.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 194 ◽  
Author(s):  
Liuxin Yang ◽  
Enlong Liu

Cracks induced by evaporation or rainfall have a great influence on the stability of unsaturated soil slopes, which can lead to landslides during the rainfall process. In order to study the effect of crack characteristics on the evolution of stress and deformation of unsaturated soil slopes, a series of numerical analyses under different conditions were performed using a coupled elastoplastic finite element program that we developed for unsaturated soil. When carrying out the numerical analyses, the effective stress for unsaturated soil proposed by Bishop and an elastoplastic double-hardening constitutive model for the soil skeleton were employed. The varying parameters, including the crack location, the discharge speed, evaporation rate, infiltration rate, and tensile strength, were investigated to study the coupling process of pore water pressure and deformation in the process of evaporation and rainfall infiltration. The numerical results showed that the minimum pore water pressure of the soil slope at the end of evaporation/rainfall decreased gradually and the crack width increased gradually as the crack set closer to the slope; the larger the discharge speed of pore air, the greater the crack width. With the increase in the evaporation rate, the pore water pressure of the soil slope reduced and the crack initiated earlier and became wider. As the infiltration rate increased, the pore water pressure of the soil slope and the crack width increased, but the decreasing duration became shorter. The change of tensile strength had little effect on the pore water pressure, but the development of the crack width changed with evaporation and rainfall infiltration.


2004 ◽  
Vol 41 (4) ◽  
pp. 629-643 ◽  
Author(s):  
Hong Yang ◽  
H Rahardjo ◽  
E C Leong ◽  
D G Fredlund

The capillary barrier effect was investigated by conducting infiltration tests on three soil columns of fine sand over medium sand, medium sand over gravelly sand, and fine sand over gravelly sand. The barrier effect was verified in the underlying layer of coarser material, and the water-entry values of the coarser layers were confirmed to be nearly equal to the residual matric suctions of the soils. The coarser layer of gravelly sand, which had a lower water-entry value, was more effective in forming a barrier than the coarser layer of medium sand, which had a higher water-entry value. When the capillary barrier was comprised of a coarser layer of gravelly sand, there was more water stored in the finer layer at the end of the drying stage than when the capillary barrier was comprised of a coarser layer of medium sand. Non-equilibrium static conditions of pore-water pressure profiles were observed in the three soil columns, and a generalized ultimate pore-water pressure profile of a capillary barrier system was proposed. In addition, the final volumetric water contents versus matric suctions of the soils as measured from the soil columns were reasonably consistent with the soil-water characteristic curves (SWCCs) of the soils, suggesting that the drying SWCC of a soil could also be obtained from the drying process in a soil column (or a capillary open tube). The drying SWCC could be established from measurements in the soil column up to a height corresponding to two times the residual matric suction head of the soil.Key words: capillary barrier, soil column, soil-water characteristic curve, pore-water pressure, water content, matric suction.


2011 ◽  
Vol 71-78 ◽  
pp. 4864-4867
Author(s):  
Guang Hua Cai ◽  
Hai Jun Lu ◽  
Wei He ◽  
Long Guan ◽  
Wei Qi Xu

Rainfall infiltration is currently one of the important factors in studying the soil-slope stability. By using saturated-unsaturated seepage theory, the traditional limit equilibrium method and so on, analyze the water content and the pore-water pressure changes under the rainfall condition, then analyze the influence mechanism of the slope stability. Through the Seep/W and the Slope/W of the GEO-Slope software, do the numerical simulation of the slope stability under the rainfall condition, to seek the distribution of pore-water pressure on the rainfall situation and the influence of the seepage field from various parameters such as rainfall intensity and the soil permeability coefficient, thus to study the slope stability.


Sign in / Sign up

Export Citation Format

Share Document