Relationships of North American members of Rhodiola (Crassulaceae)

Botany ◽  
2014 ◽  
Vol 92 (12) ◽  
pp. 901-910 ◽  
Author(s):  
Joel P. Olfelt ◽  
William A. Freyman

Taxa of Rhodiola L. (Crassulaceae) generally grow in arctic or alpine habitats. Some Rhodiola species are used medicinally, one taxon, Rhodiola integrifolia Raf. subsp. leedyi (Rosend. & J.W.Moore) Moran, (Leedy’s roseroot), is rare and endangered, and the group’s biogeography in North America is intriguing because of distributional disjunctions and the possibility that Rhodiola rhodantha (A.Gray) H.Jacobsen (2n = 7II) and Rhodiola rosea L. (2n = 11II) hybridized to form Rhodiola integrifolia Raf. (2n = 18II). Recent studies of the North American Rhodiola suggest that the group’s current taxonomy is misleading. We analyzed nuclear and chloroplast DNA sequences (internal transcribed spacer (ITS), trnL intron, trnL–trnF spacer, trnS–trnG spacer) from the North American Rhodiola taxa. We combined our data with GenBank sequences from Asian Rhodiola species, performed parsimony, maximum likelihood (ML), and Bayesian phylogenetic analyses, and applied a Bayesian clock model to the ITS data. Our analyses reveal two major Rhodiola clades, suggest that hybridization between R. rhodantha and R. rosea lineages was possible, show two distinct clades within R. integrifolia, and demonstrate that a Black Hills, South Dakota, Rhodiola population should be reclassified as Leedy’s roseroot. We recommend that R. integrifolia be revised, and that the Black Hills Leedy’s roseroot population be managed as part of that rare and endangered taxon.

2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


Horticulturae ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 19
Author(s):  
Patricia Coughlan ◽  
James C. Carolan ◽  
Ingrid L. I. Hook ◽  
Lisa Kilmartin ◽  
Trevor R. Hodkinson

Taxus is a genus of trees and shrubs with high value in horticulture and medicine as a source of the anticancer drug paclitaxel. The taxonomy of the group is complex due to the lack of diagnostic morphological characters and the high degree of similarity among species. Taxus has a wide global geographic distribution and some taxonomists recognize only a single species with geographically defined subgroups, whereas others have described several species. To address these differences in taxonomic circumscription, phylogenetic analyses were conducted on DNA sequences using Maximum Likelihood, Bayesian Inference and TCS haplotype networks on single and combined gene regions obtained for the nuclear ribosomal ITS region and the plastid trnL intron and trnL-F intergenic spacer. Evidence is presented for the sister group status of Pseudotaxus to Taxus and the inclusion of Amentotaxus, Austrotaxus, Cephalotaxus and Torreya within Taxaceae. Results are consistent with the taxonomic recognition of nine species: T. baccata, T. brevifolia, T. canadensis, T. cuspidata, T. floridana, T. fuana, T. globosa, T. sumatrana and T. wallichiana, but evidence is found for less species distinction and considerable reticulation within the T. baccata, T. canadensis and T. cuspidata group. We compare the results to known taxonomy, biogeography, present new leaf anatomical data and discuss the origins of the hybrids T. ×media and T. ×hunnewelliana.


2012 ◽  
Vol 62 (1) ◽  
pp. 427-446 ◽  
Author(s):  
Susana Schönhuth ◽  
David M. Hillis ◽  
David A. Neely ◽  
Lourdes Lozano-Vilano ◽  
Anabel Perdices ◽  
...  

2016 ◽  
Vol 48 (5) ◽  
pp. 387-421 ◽  
Author(s):  
Daphne F. STONE ◽  
James W. HINDS ◽  
Frances L. ANDERSON ◽  
James C. LENDEMER

AbstractA revision of the North American members of the Leptogium saturninum group (i.e. species with long lower-surface hairs, isidia, and usually smooth upper surface) is presented based on molecular phylogenetic analyses of mtSSU and nrITS sequence data, together with an extensive morphological study. Three species supported by both molecular and morphological characteristics are recognized: L. acadiense sp. nov. (distinguished by granular saturninum-type isidia, medulla composed of irregularly arranged or perpendicular hyphae), L. cookii sp. nov. (distinguished by cylindrical saturninum-type isidia) and L. hirsutum (distinguished by hirsutum-type isidia and medulla composed of loosely intertwined hyphae). One species supported by morphological characteristics, but for which no molecular data could be generated, is also recognized: L. compactum sp. nov. (distinguished by hirsutum-type isidia and medulla composed of tightly packed hyphae). Finally, L. saturninum (distinguished by granular saturninum-type isidia and medulla composed of perpendicular and parallel hyphae) is supported by morphological characteristics but molecular data from geographically diverse populations, including those near the type locality, indicate that the morphologically defined species is paraphyletic. Leptogium burnetiae is excluded from North American based on morphological study of the type. The species are described and illustrated in detail, and are distinguished morphologically by their isidium development, morphology of mature isidia, and pattern of hyphae in the medulla in transverse sections near lobe margins. A key to the members of the L. saturninum group and related species is also presented.


Genome ◽  
2017 ◽  
Vol 60 (9) ◽  
pp. 720-732 ◽  
Author(s):  
Kasey K. Pham ◽  
Andrew L. Hipp ◽  
Paul S. Manos ◽  
Richard C. Cronn

Owing to high rates of introgressive hybridization, the plastid genome is poorly suited to fine-scale DNA barcoding and phylogenetic studies of the oak genus (Quercus, Fagaceae). At the tips of the oak plastome phylogeny, recent gene migration and reticulation generally cause topology to reflect geographic structure, while deeper branches reflect lineage divergence. In this study, we quantify the simple and partial effects of geographic proximity and nucleome-inferred phylogenetic history on oak plastome phylogeny at different evolutionary scales. Our study compares pairwise phylogenetic distances based on complete plastome sequences, pairwise phylogenetic distances from nuclear restriction site-associated DNA sequences (RADseq), and pairwise geographic distances for 34 individuals of the white oak clade representing 24 North American and Eurasian species. Within the North American white oak clade alone, phylogenetic history has essentially no effect on plastome variation, while geography explains 11%–21% of plastome phylogenetic variance. However, across multiple continents and clades, phylogeny predicts 30%–41% of plastome variation, geography 3%–41%. Tipwise attenuation of phylogenetic informativeness in the plastome means that in practical terms, plastome data has little use in solving phylogenetic questions, but can still be a useful barcoding or phylogenetic marker for resolving questions among major clades.


2016 ◽  
Vol 90 (2) ◽  
pp. 288-304 ◽  
Author(s):  
Juan Liu ◽  
Mark V.H. Wilson ◽  
Alison M. Murray

AbstractFossil catostomids were very rare prior to the Eocene. After the Eocene, they suddenly decreased in diversity in Asia while becoming common fishes in the North American fauna. Knowledge of the taxonomy, diversity, and distribution of Eocene catostomids is critical to understanding the evolution of this fish group. We herein describe a new catostomid species of the genus †AmyzonCope, 1872 from the Eocene Kishenehn Formation in Montana, USA. The new species, †Amyzon kishenehnicum, differs from known species of †Amyzonin having hypurals 2 and 3 consistently fused to the compound centrum proximally, and differs from other Eocene catostomids in that the pelvic bone is intermediately forked. All our phylogenetic analyses suggest that the new species is the sister group of †A.aggregatumWilson, 1977 and that †Amyzonis the most basal clade of the Catostomidae. We reassessed the osteological characters of the North American species of †Amyzonfrom a large number of well-preserved specimens of the new species, as well as †A.gosiutenseGrande et al., 1982 and †A.aggregatum. Osteological characters newly discovered indicate that †A.gosiutenseis not a junior synonym of †A.aggregatum, but should be retained as a distinct species.


2002 ◽  
Vol 50 (6) ◽  
pp. 677 ◽  
Author(s):  
Randall J. Bayer ◽  
Edward W. Cross

The tribal affinities of two dubiously placed genera of the Asteraceae, Printzia and Isoetopsis, were assessed by using three chloroplast DNA sequences, the trnL/F spacer, the trnL intron and the matK coding region. The outgroup was represented by two species of the tribe Barnadesieae, whereas one to six genera (43 species including Printzia and Isoetopsis) of the tribes of the Asteroideae [Anthemideae (six genera), Astereae (five) Calenduleae (two), Gnaphalieae (six), Heliantheae s.l. (five), Inuleae s.str. (three), Plucheeae (two), Senecioneae (four)] and Cichorioideae [Arctotideae (one), Cardueae (two), Lactuceae (two), Liabeae (one), Mutisieae (one), Vernonieae (one)] were chosen as the ingroup. Phylogenetic analysis indicates that both Printzia and Isoetopsis have a strong affinity with members of the tribe Astereae. At some point in their taxonomic history, both genera had been placed in this tribe and there are good morphological and chemical characters that justify this placement.


Plant Disease ◽  
2000 ◽  
Vol 84 (9) ◽  
pp. 1047-1047 ◽  
Author(s):  
M. Garbelotto ◽  
I. Chapela

The basidiomycete Heterobasidion annosum (Fr.:Fr.) Bref. is a pathogen of conifers in the Northern Hemisphere. This fungus has been previously reported from Pinus spp. (1) and from Abies religiosa (H.B.K.) Schl. et Cham. (2) in Central Mexico. In 1998, H. annosum was collected for the first time from stumps of Abies hickeli Flous et Gaussen in the Southern Mexican State of Oaxaca, at an altitude of 2,900 m (Lat 17° 28′ N, Long 96° 31′ W). Although standing trees at the sampled site were asymptomatic, the sapwood and heartwood of several fir stumps were extensively decayed. The white laminated rot was similar to that caused by H. annosum on other Abies spp. Decay pockets extended to the upper surface of the stumps, indicating the fungus had infected and colonized the tree butts prior to tree felling. H. annosum basidiocarps were found both outside the roots in the duff layer and inside the decay pockets. The anamorph of H. annosum (Spiniger meineckellum (A. Olson) Stalpers) was isolated from the context of three basidiocarps. Based on comparative analysis of DNA sequences of the nuclear ribosomal internal transcribed spacer region, all three isolates belonged to the North American S intersterility group (ISG). This report expands the host and the geographic ranges of the North American S ISG, and represents the world's southernmost finding of an Abies species infected by this pathogen. References: (1) R. Martinez Barrera and R. Sanchez Ramirez. Ciencia Forestal 5(26):3, 1980. (2) M. Ruiz-Rodriguez and L. M. Pinzon-Picaseno. Bol. Soc. Bot. Mexico 54:225, 1994.


Botany ◽  
2008 ◽  
Vol 86 (9) ◽  
pp. 1039-1064 ◽  
Author(s):  
Stephen R. Downie ◽  
Deborah S. Katz-Downie ◽  
Feng-Jie Sun ◽  
Chang-Shook Lee

Intergeneric phylogenetic relationships within Apiaceae tribe Oenantheae were investigated using sequence data from the chloroplast DNA psbI–5′trnK(UUU) and nuclear ribosomal DNA internal transcribed spacer regions. One hundred and thirty-one accessions were examined, representing all 17 genera of the tribe and approximately one-half of its species. The cpDNA region includes four intergenic spacers and the rps16 intron and these noncoding loci were analyzed separately to assess their relative utility for resolving relationships. Separate maximum parsimony analyses of the entire psbI–5′trnK(UUU) and ITS regions, each with and without scored indels, yielded concordant trees. Phylogenies derived from maximum parsimony, Bayesian, or maximum likelihood analyses of combined chloroplast and nuclear DNA sequences for 82 accessions were highly resolved, well supported, and consistent. Among the five noncoding loci examined, the trnQ(UUG)–5′rps16 and 3′rps16–5′trnK(UUU) intergenic spacers are the most variable, with the latter contributing the greatest total number of parsimony informative characters relative to its size. The North American genera Atrema , Cynosciadium , Daucosma , Limnosciadium , Neogoezia , Oxypolis , Ptilimnium , and Trepocarpus ally with the western hemispheric and Australasian genus Lilaeopsis in a strongly supported North American Endemics clade that is a sister group to a clade composed primarily of Old World taxa ( Berula sensu lato, Cryptotaenia , Helosciadium , and Sium ). Oxypolis and Ptilimnium are not monophyletic, with the rachis-leaved members of each comprising a clade separate from their compound-leaved congeners. Dispersal-vicariance analysis suggests that the ancestors of the North American Endemics clade probably originated in Canada and the USA or in a broader ancestral area including Mexico and South America.


Sign in / Sign up

Export Citation Format

Share Document