scholarly journals The ozonolysis of cyclic monoterpenes: a computational review

2018 ◽  
Vol 96 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Mansour H. Almatarneh ◽  
Ismael A. Elayan ◽  
Raymond A. Poirier ◽  
Mohammednoor Altarawneh

Monoterpenes are prevalent organic compounds emitted to the atmosphere, via biogenic activities in various types of plants. Monoterpenes undergo atmospheric decomposition reactions derived by the potent atmospheric oxidizing agents, OH, O3, and NOx. This review critically surveys literature pertinent to the atmospheric removal of monoterpenes by ozone. In general, the ozonolysis reactions of monoterpenes occur through the so-called Criegee mechanism. These classes of reactions generate a wide array of chemical organic and inorganic low vapor pressure (LVP) species. Carbonyl oxides, commonly known as Criegee intermediates (CIs), are the main intermediates from the gas-phase ozonolysis reaction. Herein, we present mechanistic pathways, reactions rate constants, product profiles, thermodynamic, and kinetic results dictating the ozonolysis reactions of selected monoterpenes (namely carene, camphene, limonene, α-pinene, β-pinene, and sabinene). Furthermore, the unimolecular (vinyl hydroperoxide and ester channels) and bimolecular reactions (cycloaddition, insertion, and radical recombination) of the resulting CIs are fully discussed. The orientations and conformations of the resulting primary ozonides (POZs) and CIs of monoterpenes are classified to reveal their plausible effects on reported thermokinetic parameters.

2018 ◽  
Author(s):  
Anna L. Hodshire ◽  
Brett B. Palm ◽  
M. Lizabeth Alexander ◽  
Qijing Bian ◽  
Pedro Campuzano-Jost ◽  
...  

Abstract. Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09–0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and the GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter. We find the best model-to-measurement agreement when the accommodation coefficient of the larger particles (Dp > 60 nm) was 0.1 or lower (with an accommodation coefficient of 1 for smaller particles), which suggests a diffusion limitation in the larger particles. When using these low accommodation-coefficient values, the model agrees with measurements when using a published H2SO4-organics nucleation mechanism and previously published values of rate constants for gas-phase oxidation reactions. Further, gas-phase fragmentation was found to have a significant impact upon the size distribution, and including fragmentation was necessary for accurately simulating the distributions in the OFR. The model was insensitive to the value of the reactive uptake coefficient on these aging timescales. Monoterpenes and isoprene could explain 24–95 % of the observed change in total volume of aerosol in the OFR, with ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) appearing to explain the remainder of the change in total volume. These results provide support to the mass-based findings of previous OFR studies, give insight to important size-distribution dynamics in the OFR, and enable the design of future OFR studies focused on new particle formation and/or microphysical processes.


2020 ◽  
Vol 20 (21) ◽  
pp. 13497-13519
Author(s):  
R. Anthony Cox ◽  
Markus Ammann ◽  
John N. Crowley ◽  
Hartmut Herrmann ◽  
Michael E. Jenkin ◽  
...  

Abstract. This article, the seventh in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers an extension of the gas-phase and photochemical reactions related to Criegee intermediates previously published in Atmospheric Chemistry and Physics (ACP) in 2006 and implemented on the IUPAC website up to 2020. The article consists of an introduction, description of laboratory measurements, a discussion of rate coefficients for reactions of O3 with alkenes producing Criegee intermediates, rate coefficients of unimolecular and bimolecular reactions and photochemical data for reactions of Criegee intermediates, and an overview of the atmospheric chemistry of Criegee intermediates. Summary tables of the recommended kinetic and mechanistic parameters for the evaluated reactions are provided. Data sheets summarizing information upon which the recommendations are based are given in two files, provided as a Supplement to this article.


2018 ◽  
Vol 18 (16) ◽  
pp. 12433-12460 ◽  
Author(s):  
Anna L. Hodshire ◽  
Brett B. Palm ◽  
M. Lizabeth Alexander ◽  
Qijing Bian ◽  
Pedro Campuzano-Jost ◽  
...  

Abstract. Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter. We find the best model-to-measurement agreement when the accommodation coefficient of the larger particles (Dp > 60 nm) was 0.1 or lower (with an accommodation coefficient of 1 for smaller particles), which suggests a diffusion limitation in the larger particles. When using these low accommodation-coefficient values, the model agrees with measurements when using a published H2SO4-organics nucleation mechanism and previously published values of rate constants for gas-phase oxidation reactions. Further, gas-phase fragmentation was found to have a significant impact upon the size distribution, and including fragmentation was necessary for accurately simulating the distributions in the OFR. The model was insensitive to the value of the reactive uptake coefficient on these aging timescales. Monoterpenes and isoprene could explain 24 %–95 % of the observed change in total volume of aerosol in the OFR, with ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) appearing to explain the remainder of the change in total volume. These results provide support to the mass-based findings of previous OFR studies, give insight to important size-distribution dynamics in the OFR, and enable the design of future OFR studies focused on new particle formation and/or microphysical processes.


1997 ◽  
Vol 34 (8) ◽  
pp. 213-216 ◽  
Author(s):  
Andrew Crowson ◽  
Robin W. Hiley ◽  
Trevor Ingham ◽  
Tom McCreedy ◽  
Alexandra J. Pilgrim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document