reactive uptake coefficient
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1502
Author(s):  
Natalie R. Smith ◽  
Julia Montoya-Aguilera ◽  
Donald Dabdub ◽  
Sergey A. Nizkorodov

This study investigated the uptake of ammonia (NH3) by secondary organic aerosol (SOA) particles generated via limonene photooxidation or ozonolysis as well as the uptake of dimethylamine (DMA) by limonene ozonolysis, α-cedrene photooxidation, or toluene photooxidation SOA in an environmental chamber between 0–50% relative humidity. In addition to the acid-base equilibrium uptake, NH3 and DMA can react with SOA carbonyl compounds converting them into nitrogen-containing organic compounds (NOCs). The effective reactive uptake coefficients for the formation of NOCs from ammonia were measured on the order of 10−5. The observed DMA reactive uptake coefficients ranged from 10−5 to 10−4. Typically, the reactive uptake coefficient decreased with increasing relative humidity. This is consistent with NOC formation by a condensation reaction between NH3 or DMA with SOA, which produces water as a product. Ammonia is more abundant in the atmosphere than amines. However, the larger observed reactive uptake coefficient suggests that amine uptake may also be a potential source of organic nitrogen in particulate matter.


2021 ◽  
Vol 21 (7) ◽  
pp. 5755-5775
Author(s):  
Joanna E. Dyson ◽  
Graham A. Boustead ◽  
Lauren T. Fleming ◽  
Mark Blitz ◽  
Daniel Stone ◽  
...  

Abstract. The rate of production of HONO from illuminated TiO2 aerosols in the presence of NO2 was measured using an aerosol flow tube system coupled to a photo-fragmentation laser-induced fluorescence detection apparatus. The reactive uptake coefficient of NO2 to form HONO, γNO2→HONO, was determined for NO2 mixing ratios in the range 34–400 ppb, with γNO2→HONO spanning the range (9.97 ± 3.52) × 10−6 to (1.26 ± 0.17) × 10−4 at a relative humidity of 15 ± 1 % and for a lamp photon flux of (1.63 ± 0.09) ×1016 photons cm−2 s−1 (integrated between 290 and 400 nm), which is similar to midday ambient actinic flux values. γNO2→HONO increased as a function of NO2 mixing ratio at low NO2 before peaking at (1.26 ± 0.17) ×10-4 at ∼ 51 ppb NO2 and then sharply decreasing at higher NO2 mixing ratios rather than levelling off, which would be indicative of surface saturation. The dependence of HONO production on relative humidity was also investigated, with a peak in production of HONO from TiO2 aerosol surfaces found at ∼ 25 % RH. Possible mechanisms consistent with the observed trends in both the HONO production and reactive uptake coefficient were investigated using a zero-dimensional kinetic box model. The modelling studies supported a mechanism for HONO production on the aerosol surface involving two molecules of NO2, as well as a surface HONO loss mechanism which is dependent upon NO2. In a separate experiment, significant production of HONO was observed from illumination of mixed nitrate/TiO2 aerosols in the absence of NO2. However, no production of HONO was seen from the illumination of nitrate aerosols alone. The rate of production of HONO observed from mixed nitrate/TiO2 aerosols was scaled to ambient conditions found at the Cape Verde Atmospheric Observatory (CVAO) in the remote tropical marine boundary layer. The rate of HONO production from aerosol particulate nitrate photolysis containing a photocatalyst was found to be similar to the missing HONO production rate necessary to reproduce observed concentrations of HONO at CVAO. These results provide evidence that particulate nitrate photolysis may have a significant impact on the production of HONO and hence NOx in the marine boundary layer where mixed aerosols containing nitrate and a photocatalytic species such as TiO2, as found in dust, are present.


2020 ◽  
Author(s):  
Joanna E. Dyson ◽  
Graham A. Boustead ◽  
Lauren T. Fleming ◽  
Mark Blitz ◽  
Daniel Stone ◽  
...  

Abstract. The rate of production of HONO from illuminated TiO2 aerosols in the presence of NO2 was measured using an aerosol flow tube coupled to a photo-fragmentation laser induced fluorescence detection apparatus. The reactive uptake coefficient of NO2 to form HONO, γNO2→HONO, was determined for NO2 mixing ratios in the range 34–400 ppb, with γNO2→HONO spanning the range (9.97 ± 3.52) × 10−6 to (1.26 ± 0.17) × 10−4 at a relative humidity of 15 ± 1 % and for a lamp photon flux of (1.63 ± 0.09) × 1016 photons cm−2 s −1 (integrated between 290 and 400 nm), which is similar to values of ambient actinic flux at midday. γNO2→HONO increased as a function of NO2 mixing ratio at low NO2 before peaking at (1.26 ± 0.17) × 10−4 at 51 ppb NO2 and then sharply decreasing at higher NO2 mixing ratios, rather than levelling off which would be indicative of surface saturation. The dependence of HONO production on relative humidity was also investigated, with a peak in production of HONO from TiO2 aerosol surfaces found at ~25 % RH. Possible mechanisms consistent with the observed trends in both the HONO production and reactive uptake coefficient were investigated using a zero-dimensional kinetic box model. The modelling studies supported a mechanism for HONO production on the aerosol surface involving two molecules of NO2, as well as a surface HONO loss mechanism which is dependent upon NO2. In a separate experiment, significant production of HONO was observed from illumination of mixed nitrate/TiO2 aerosols in the absence of NO2. However, no statistically significant production of HONO was seen from the illumination of pure nitrate aerosols. The rate of production of HONO observed from mixed nitrate/TiO2 aerosols was scaled to ambient conditions found at the Cape Verde Atmospheric Observatory (CVAO) in the remote tropical marine boundary layer. The rate of HONO production from aerosol particulate nitrate photolysis containing a photocatalyst was found to be similar to the missing HONO production rate necessary to reproduce observed concentrations of HONO at CVAO. These results provide evidence that particulate nitrate photolysis may have a significant impact on the production of HONO and hence NOx in the marine boundary layer where mixed aerosols containing nitrate and a photocatalytic species such as TiO2, as found in dust, are present.


2020 ◽  
Author(s):  
Joanna Dyson ◽  
Graham Boustead ◽  
Lauren Fleming ◽  
Mark Blitz ◽  
Daniel Stone ◽  
...  

<p>The hydroxyl radical (OH) is the main oxidant in the troposphere and is vitally important for its role in the removal of greenhouse gases such as methane from the atmosphere. Moreover, the OH radical also has a role in the formation of secondary pollutants such as tropospheric ozone and secondary organic aerosols (SOAs), formed via the oxidation of volatile organic compounds (VOCs). Understanding the sources and sinks of OH within the atmosphere is therefore crucial in order to fully understand the concentration and distribution of trace atmospheric species associated with climate change and poor air quality.</p><p>In polluted environments the dominant source of OH to initiate oxidation is the photolysis of nitrous acid (HONO). Current atmospheric chemistry models underestimate the concentration of HONO indicating a potential missing tropospheric source of HONO. There is a large uncertainty in the production of HONO from the contribution and role of aerosols and heterogeneous chemistry both under light and dark conditions.</p><p>In order to investigate the missing source of HONO from illuminated aerosols and determine its atmospheric relevance, a photo-fragmentation laser induced fluorescence (PF-LIF) instrument coupled to an aerosol flow tube system has been constructed. The PF-LIF instrument provides a highly sensitive measurement of HONO by fragmenting it into OH which is then detected in a low pressure cell by LIF. The aim of this system is to measure the rate of production of HONO from illuminated aerosol surfaces.</p><p>We will present an overview of the PF-LIF instrument and results from experiments investigating the reactive uptake of NO<sub>2</sub> by TiO<sub>2</sub> aerosols to produce HONO. The change in the reactive uptake coefficient as a function of NO<sub>2</sub> concentration and the dependence of HONO production on relative humidity and light intensity will also be discussed.   </p>


2018 ◽  
Vol 18 (16) ◽  
pp. 12433-12460 ◽  
Author(s):  
Anna L. Hodshire ◽  
Brett B. Palm ◽  
M. Lizabeth Alexander ◽  
Qijing Bian ◽  
Pedro Campuzano-Jost ◽  
...  

Abstract. Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter. We find the best model-to-measurement agreement when the accommodation coefficient of the larger particles (Dp > 60 nm) was 0.1 or lower (with an accommodation coefficient of 1 for smaller particles), which suggests a diffusion limitation in the larger particles. When using these low accommodation-coefficient values, the model agrees with measurements when using a published H2SO4-organics nucleation mechanism and previously published values of rate constants for gas-phase oxidation reactions. Further, gas-phase fragmentation was found to have a significant impact upon the size distribution, and including fragmentation was necessary for accurately simulating the distributions in the OFR. The model was insensitive to the value of the reactive uptake coefficient on these aging timescales. Monoterpenes and isoprene could explain 24 %–95 % of the observed change in total volume of aerosol in the OFR, with ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) appearing to explain the remainder of the change in total volume. These results provide support to the mass-based findings of previous OFR studies, give insight to important size-distribution dynamics in the OFR, and enable the design of future OFR studies focused on new particle formation and/or microphysical processes.


2018 ◽  
Vol 18 (9) ◽  
pp. 6679-6689 ◽  
Author(s):  
Ting Yu ◽  
Defeng Zhao ◽  
Xiaojuan Song ◽  
Tong Zhu

Abstract. The reaction of SO2 with NO2 on the surface of aerosol particles has been suggested to be important in sulfate formation during severe air pollution episodes in China. However, we found that the direct oxidation of SO2 by NO2 was slow and might not be the main reason for sulfate formation in ambient air. In this study, we investigated the multiphase reaction of SO2 with an O2 ∕ NO2 mixture on single CaCO3 particles using Micro-Raman spectroscopy. The reaction converted the CaCO3 particle to a Ca(NO3)2 droplet, with CaSO4 ⚫ 2H2O solid particles embedded in it, which constituted a significant fraction of the droplet volume at the end of the reaction. The reactive uptake coefficient of SO2 for sulfate formation was on the order of 10−5, which was higher than that for the multiphase reaction of SO2 directly with NO2 by 2–3 orders of magnitude. According to our observations and the literature, we found that in the multiphase reaction of SO2 with the O2 ∕ NO2 mixture, O2 was the main oxidant of SO2 and was necessary for radical chain propagation. NO2 acted as the initiator of radical formation, but not as the main oxidant. The synergy of NO2 and O2 resulted in much faster sulfate formation than the sum of the reaction rates with NO2 and with O2 alone. We estimated that the multiphase oxidation of SO2 by O2 initiated by NO2 could be an important source of sulfate and a sink of SO2, based on the calculated lifetime of SO2 regarding the loss through the multiphase reaction versus the loss through the gas-phase reaction with OH radicals. Parameterization of the reactive uptake coefficient of the reaction observed in our laboratory for further model simulation is needed, as well as an integrated assessment based on field observations, laboratory study results, and model simulations to evaluate the importance of the reaction in ambient air during severe air pollution episodes, especially in China.


2018 ◽  
Author(s):  
Anna L. Hodshire ◽  
Brett B. Palm ◽  
M. Lizabeth Alexander ◽  
Qijing Bian ◽  
Pedro Campuzano-Jost ◽  
...  

Abstract. Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09–0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and the GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter. We find the best model-to-measurement agreement when the accommodation coefficient of the larger particles (Dp > 60 nm) was 0.1 or lower (with an accommodation coefficient of 1 for smaller particles), which suggests a diffusion limitation in the larger particles. When using these low accommodation-coefficient values, the model agrees with measurements when using a published H2SO4-organics nucleation mechanism and previously published values of rate constants for gas-phase oxidation reactions. Further, gas-phase fragmentation was found to have a significant impact upon the size distribution, and including fragmentation was necessary for accurately simulating the distributions in the OFR. The model was insensitive to the value of the reactive uptake coefficient on these aging timescales. Monoterpenes and isoprene could explain 24–95 % of the observed change in total volume of aerosol in the OFR, with ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) appearing to explain the remainder of the change in total volume. These results provide support to the mass-based findings of previous OFR studies, give insight to important size-distribution dynamics in the OFR, and enable the design of future OFR studies focused on new particle formation and/or microphysical processes.


2018 ◽  
Vol 18 (4) ◽  
pp. 2481-2493 ◽  
Author(s):  
Defeng Zhao ◽  
Xiaojuan Song ◽  
Tong Zhu ◽  
Zefeng Zhang ◽  
Yingjun Liu ◽  
...  

Abstract. Heterogeneous/multiphase oxidation of SO2 by NO2 on solid or aqueous particles is thought to be a potentially important source of sulfate in the atmosphere, for example, during heavily polluted episodes (haze), but the reaction mechanism and rate are uncertain. In this study, in order to assess the importance of the direct oxidation of SO2 by NO2 we investigated the heterogeneous/multiphase reaction of SO2 with NO2 on individual CaCO3 particles in N2 using Micro-Raman spectroscopy. In the SO2 ∕ NO2 ∕ H2O ∕ N2 gas mixture, the CaCO3 solid particle was first converted to the Ca(NO3)2 droplet by the reaction with NO2 and the deliquescence of Ca(NO3)2, and then NO2 oxidized SO2 in the Ca(NO3)2 droplet forming CaSO4, which appeared as needle-shaped crystals. Sulfate was mainly formed after the complete conversion of CaCO3 to Ca(NO3)2, that is, during the multiphase oxidation of SO2 by NO2. The precipitation of CaSO4 from the droplet solution promoted sulfate formation. The reactive uptake coefficient of SO2 for sulfate formation is on the order of 10−8, and RH enhanced the uptake coefficient. We estimate that the direct multiphase oxidation of SO2 by NO2 is not an important source of sulfate in the ambient atmosphere compared with the SO2 oxidation by OH in the gas phase and is not as important as other aqueous-phase pathways, such as the reactions of SO2 with H2O2, O3, and O2, with or without transition metals.


2017 ◽  
Author(s):  
Ting Yu ◽  
Defeng Zhao ◽  
Xiaojuan Song ◽  
Tong Zhu

Abstract. The reaction of SO2 with NO2 on the surface of aerosol particles has been suggested to be important in sulfate formation during severe air pollution in China. However, we found that the direct oxidation of SO2 by NO2 was slow and might not be the main reason for sulfate formation in ambient air. In this study, we investigated the multiphase reaction of SO2 with NO2 on single CaCO3 particles in synthetic air, i.e., in the presence of O2, using Micro-Raman spectroscopy. The reaction converted the CaCO3 particle to the Ca(NO3)2 droplet containing CaSO4 × 2H2O solid particles embedded in it, which constituted a large fraction of the droplet volume at the end of the reaction. Compared with the reaction in the absence of O2, the morphology of the particle during the reaction in synthetic air was significantly different and the amount of sulfate formed at the end of the experiment was much higher. The reactive uptake coefficient of SO2 for sulfate formation was on the order of 10−5, which was two to three orders of magnitude higher than that in the absence of O2. According to the difference between the reactive uptake coefficient of SO2 in the absence of O2 and that in the presence of O2, we found that in the multiphase reaction of SO2 with NO2 in synthetic air, O2 was the main oxidant of SO2 and necessary for radical chain propagation. NO2 acted as the initializer of the radical formation but not the main oxidant. Such synergy of NO2 and O2 resulted in much faster sulfate formation than when either of them was absent. We estimated that the multiphase oxidation of SO2 by O2 in the presence of NO2 can be an important source of sulfate and sink of SO2 based on the calculated lifetime of SO2 regarding the loss by the multiphase reaction versus the lifetime regarding the loss by the gas phase reaction with OH radical. Parameterizing the reactive uptake coefficient of the reaction observed in our laboratory for further model simulation is needed, as well as an integrated assessment based on field observation, laboratory study results, and model simulation to evaluate the importance of the reaction in ambient air during the severe air pollution period, especially in China.


2017 ◽  
Author(s):  
Defeng Zhao ◽  
Xiaojuan Song ◽  
Tong Zhu ◽  
Zefeng Zhang ◽  
Yingjun Liu

Abstract. Heterogeneous/multiphase reaction of SO2 with NO2 on solid or aqueous particles is thought to be a potentially important source of sulfate in the atmosphere, for example, during heavily polluted episodes (haze), but the reaction mechanism and rate are uncertain. In this study, we investigated the heterogeneous/multiphase reaction of SO2 with NO2 on individual CaCO3 particles in N2 using Micro-Raman spectroscopy in order to assess the importance of the direct oxidation of SO2 by NO2. In the SO2/NO2/H2O/N2 gas mixture, the CaCO3 solid particle was first converted to the Ca(NO3)2 droplet by the reaction with NO2 and the deliquescence of Ca(NO3)2, and then NO2 oxidized SO2 in the Ca(NO3)2 droplet forming CaSO4, which appeared as needle-shaped crystals. Sulfate was mainly formed after the complete conversion of CaCO3 to Ca(NO3)2, that is, during the multiphase oxidation of SO2 by NO2. The precipitation of CaSO4 from the droplet solution promoted sulfate formation. The reactive uptake coefficient of SO2 for sulfate formation is on the order of 10−8, and RH enhanced the uptake coefficient. We estimate that the direct multiphase oxidation of SO2 by NO2 is not an important source of sulfate in the ambient atmosphere compared with the SO2 oxidation by OH in the gas phase.


Sign in / Sign up

Export Citation Format

Share Document