Organic photochemistry. 20. A method for estimating gas-phase rate constants for reactions of hydroxyl radicals with organic compounds from their relative rates of reaction with hydrogen peroxide under photolysis in 1,1,2-trichlorotrifluoroethane solution

1988 ◽  
Vol 22 (12) ◽  
pp. 1447-1453 ◽  
Author(s):  
Wendell L. Dilling ◽  
Stanley J. Gonsior ◽  
Glenn U. Boggs ◽  
Celia G. Mendoza
2018 ◽  
Author(s):  
Anna L. Hodshire ◽  
Brett B. Palm ◽  
M. Lizabeth Alexander ◽  
Qijing Bian ◽  
Pedro Campuzano-Jost ◽  
...  

Abstract. Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09–0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and the GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60 nm in diameter. We find the best model-to-measurement agreement when the accommodation coefficient of the larger particles (Dp > 60 nm) was 0.1 or lower (with an accommodation coefficient of 1 for smaller particles), which suggests a diffusion limitation in the larger particles. When using these low accommodation-coefficient values, the model agrees with measurements when using a published H2SO4-organics nucleation mechanism and previously published values of rate constants for gas-phase oxidation reactions. Further, gas-phase fragmentation was found to have a significant impact upon the size distribution, and including fragmentation was necessary for accurately simulating the distributions in the OFR. The model was insensitive to the value of the reactive uptake coefficient on these aging timescales. Monoterpenes and isoprene could explain 24–95 % of the observed change in total volume of aerosol in the OFR, with ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) appearing to explain the remainder of the change in total volume. These results provide support to the mass-based findings of previous OFR studies, give insight to important size-distribution dynamics in the OFR, and enable the design of future OFR studies focused on new particle formation and/or microphysical processes.


1987 ◽  
Vol 19 (3-4) ◽  
pp. 381-390 ◽  
Author(s):  
M. Brett Borup ◽  
E. Joe Middlebrooks

The feasibility of treating water contaminated by two toxic organic compounds with an ultraviolet light catalyzed oxidation process using hydrogen peroxide as an oxidant is investigated. In this process hydrogen peroxide is decomposed by ultraviolet radiation producing hydroxyl radicals. The hydroxyl radicals will then oxidize organic compounds via a complex chain of radical reactions. Tests showed that this photooxidation process could successfully remove isophorone and dimethyl phthalate from contaminated waters. A reaction rate expression which adequately describes the process was developed. The reaction rate was found to be first order with respect to hydrogen peroxide concentration, zero order with respect to organic concentration and a function of ultraviolet radiation intensity. The reaction did not exhibit autocatalytic characteristics.


Author(s):  
Hrvoje Kušić ◽  
Natalija Koprivanac ◽  
Igor Peternel ◽  
Bruce R. Locke

AbstractHybrid gas/liquid electrical discharge reactors have been used to degrade an organic dye in the presence and absence of zeolites. Simultaneous gas and liquid phase electrical discharges in the hybrid parallel and hybrid series reactors have been shown in previous work to lead to the formation of hydrogen peroxide and hydroxyl radicals in the liquid phase and ozone in the gas phase. These reactors differ in their electrode configuration, and in previous work it was shown that the ozone levels in the parallel reactor are seven times higher than in the series reactor (3000 ppm and 450 ppm, respectively), while both reactors produce the same levels of hydrogen peroxide (4.9 × 10


1988 ◽  
Vol 92 (17) ◽  
pp. 5024-5028 ◽  
Author(s):  
Timothy J. Wallington ◽  
Philippe Dagaut ◽  
Michael J. Kurylo

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248487
Author(s):  
Mahdiyeh Hasani ◽  
Tracey Campbell ◽  
Fan Wu ◽  
Keith Warriner

A gas-phase Advanced Oxidation Process (gAOP) was evaluated for decontaminating N95 and surgical masks. The continuous process was based on the generation of hydroxyl-radicals via the UV-C (254 nm) photo-degradation of hydrogen peroxide and ozone. The decontamination efficacy of the gAOP was dependent on the orientation of the N95 mask passing through the gAOP unit with those positioned horizontally enabling greater exposure to hydroxyl-radicals compared to when arranged vertically. The lethality of gAOP was independent of the applied hydrogen peroxide concentration (2–6% v/v) but was significantly (P<0.05) higher when H2O2 was introduced into the unit at 40 ml/min compared to 20 ml/min. A suitable treatment for N95 masks was identified as 3% v/v hydrogen peroxide delivered into the gAOP reactor at 40 ml/min with continuous introduction of ozone gas and a UV-C dose of 113 mJ/cm2 (30 s processing time). The treatment supported >6 log CFU decrease in Geobacillus stearothermophilus endospores, > 8 log reduction of human coronavirus 229E, and no detection of Escherichia coli K12 on the interior and exterior of masks. There was no negative effect on the N95 mask fitting or particulate efficacy after 20 passes through the gAOP system. No visual changes or hydrogen peroxide residues were detected (<1 ppm) in gAOP treated masks. The optimized gAOP treatment could also support >6 log CFU reduction of endospores inoculated on the interior or exterior of surgical masks. G. stearothermophilus Apex spore strips could be applied as a biological indicator to verify the performance of gAOP treatment. Also, a chemical indicator based on the oxidative polymerization of pyrrole was found suitable for reporting the generation of hydroxyl-radicals. In conclusion, gAOP is a verifiable treatment that can be applied to decontaminate N95 and surgical masks without any negative effects on functionality.


Sign in / Sign up

Export Citation Format

Share Document