scholarly journals Creating boreal mixedwoods by planting spruce under aspen: successful establishment in uncertain future climates

2016 ◽  
Vol 46 (10) ◽  
pp. 1217-1223 ◽  
Author(s):  
Richard Kabzems ◽  
Philip G. Comeau ◽  
Cosmin N. Filipescu ◽  
Bruce Rogers ◽  
Amanda F. Linnell Nemec

Planting white spruce (Picea glauca (Moench) Voss) under established aspen (Populus tremuloides Michx.) stands has substantial potential for regenerating mixedwood ecosystems in the western Canadian boreal forest. The presence of an aspen overstory serves to ameliorate frost and winter injury problems and suppresses understory vegetation that may compete with white spruce. Under future climatic regimes with more frequent and severe drought episodes, underplanting may be a cost-effective strategy for lowering the risk of mortality in mixedwood regeneration. We examine the growth of white spruce during the first 18 years after being planted beneath a 39-year-old stand of trembling aspen. Treatments included thinning from over 6000 stems·ha−1 to 3000, 2000, and 1000 stems·ha−1 and fertilization. Initial stimulation of understory vegetation by fertilization had no measureable effect on spruce heights or diameters at year 18. Aspen thinning treatments did not have a significant effect on spruce height growth rates after spruce crowns had emerged above the understory shrub layer due to rapid aspen basal area increases after thinning. Small, but significant, increases for spruce height and diameter were present in the 1000 and 2000 stem·ha−1 aspen thinnings. A much wider range of aspen stand conditions may be suitable for planting spruce to create mixedwood ecosystems than has been previously considered.

2004 ◽  
Vol 80 (5) ◽  
pp. 583-597 ◽  
Author(s):  
Douglas G Pitt ◽  
Milo Mihajlovich ◽  
Leslie M Proudfoot

Twelve Alberta forest regeneration blocks, situated on representative white spruce (Picea glauca (Moench) Voss) - trembling aspen (Populus tremuloides Michx.) boreal mixedwood sites, planted to white spruce, and operationally released with glyphosate herbicide, were surveyed in the fall of 2002. Stand structure and composition were quantified and compared for treated and untreated portions of each block. The Mixedwood Growth Model (MGM, Department of Renewable Resources, University of Alberta) was used to project these stands over a 100-year horizon and to model the outcomes of several additional silvicultural treatments that could be applied to these blocks. A single release treatment provided 17% and 43% gains in planted white spruce height and stem diameter, respectively, an average of five years after treatment. Treatment shifted stands from being deciduous-dominated, with only 12% conifer basal area, to more than 75% conifer basal area, increasing conifer volumes per hectare nearly three-fold, but retaining conifer-deciduous mixture. Model projections suggest that these stands will produce similar total volumes over an 80-year rotation and that conifer release essentially trades deciduous volume for conifer volume, the degree of release dictating the extent to which this trade-off takes place. A single conifer release treatment led to an average simulated mature stand that contains 21% deciduous basal area, likely meeting mixedwood rather than conifer regeneration criteria. Model simulations of additional silvicultural interventions in these stands suggested that a variety of options exist to satisfy a range of stand or landscape management objectives for spruce-aspen mixedwoods, all within a relatively fixed volume production envelope. A clearer understanding of how early stand conditions translate into stand and landscape management objectives seems prerequisite to solving management conflicts on boreal mixedwood sites. Key words: boreal mixedwoods, vegetation management, conifer release, Mixedwood Growth Model, white spruce, trembling aspen


1999 ◽  
Vol 75 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Rongzhou Man ◽  
Victor J. Lieffers

In boreal mixedwood forests, aspen (Populus tremuloides) and white spruce (Picea glauca) commonly grow in mixture. These species may avoid competition through differential shade tolerance, physical separation of canopies, phenological differences, successional separation, and differences in soil resource utilization. Aspen may also be able to positively affect the growth of white spruce by improving litter decomposition and nutrient cycling rates, controlling grass and shrub competition, ameliorating environmental extremes, and reducing pest attack. These positive relationships likely make mixed-species stands more productive than pure stands of the same species. The evidence regarding the productivity of pure versus mixed aspen/white spruce stands in natural unmanaged forests is examined in this paper. Key words: Tree mixture; productivity; boreal mixedwoods; aspen; white spruce


2005 ◽  
Vol 81 (4) ◽  
pp. 559-574 ◽  
Author(s):  
Philip G Comeau ◽  
Richard Kabzems ◽  
John McClarnon ◽  
Jean L Heineman

We describe a range of approaches for managing boreal mixedwood stands composed of trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench) Voss) in British Columbia and Alberta. Successful management of these complex forests requires a combination of well-defined objectives at the landscape level and flexible planning at the stand level. A variety of management strategies must be applied concurrently across the landscape to ensure that the natural mix of forest types and structural diversity is maintained. Selected approaches are discussed with regard to their suitability to particular stand conditions and sets of objectives, the types of tending and harvesting activities required, expected outcomes, and costs. The three approaches discussed are: 1) creation and management of two-storied intimate mixtures; 2) creation of a single-storied mixture of aspen and white spruce; and, 3) creation of a mosaic of discrete patches of each species. Key words: boreal mixedwood management, mixedwood silvicultural systems, aspen, white spruce, planning


2005 ◽  
Vol 81 (4) ◽  
pp. 538-547 ◽  
Author(s):  
Douglas G Pitt ◽  
F. Wayne Bell

Stand structure and composition for planted white spruce (Picea glauca (Moench) Voss) and other naturally regenerating commercial species were compared seven years after the testing of five conifer release alternatives on three boreal mixedwood sites. No release resulted in aspen (Populus tremuloides Michx.) -dominated stands with 89% stocking and the highest basal areas (BAs, 5.1 m2/ha) and stem volume indices (SVIs, 10.7 m3/ha) observed. Release by manual or machine cutting increased planted spruce BA and SVI by 67 and 38%, respectively. However, this treatment also caused significant root and stump suckering of aspen, more than doubling stem densities and increasing stocking by 12% over untreated areas. Although cutting reduced the height of aspen from 6 m (untreated) to 2–3 m, equal to or just taller than planted spruce, it is likely that future growth will result in deciduous-dominated mixedwoods. Broadcast foliar application with Release® herbicide temporarily reduced the size of aspen, without causing the increased regeneration observed following cutting. This produced a more varied stand structure that promoted the stature of planted spruce, doubling dominant spruce stocking, BAs, and SVIs, and leading to a more balanced mixedwood. Broadcast release with Vision® herbicide produced conifer-dominated stands with few deciduous stems; these areas contained the lowest observed BAs (1.7 m2/ha) and SVIs (1.9 m3/ha). Relatively low planting densities (1350 sph), coupled with near complete deciduous removal in these plots, created very open-grown conditions that threaten overall productivity and stem quality of the spruce. The five approaches tested are capable of producing a range of stand conditions found in a healthy boreal mixedwood landscape. Key words: boreal mixedwoods, white spruce, trembling aspen, vegetation management, fibre production


2009 ◽  
Vol 85 (4) ◽  
pp. 631-638 ◽  
Author(s):  
Alison D Lennie ◽  
Simon M Landhäusser ◽  
Victor J Lieffers ◽  
Derek Sidders

Trembling aspen regeneration was studied in 2 types of partial harvest systems designed to harvest mature aspen but protect immature spruce and encourage natural aspen regeneration. Two partial harvest systems, where the residual aspen was either left in strips or was dispersed uniformly, were compared to traditional clearcuts. After the first and second year since harvest, aspen sucker density and growth was similar between the 2 partial harvests, but was much lower than in the clearcuts. However, in the partial cuts the regeneration density was very much dependent on the location relative to residual trees. The density of regeneration was inversely related to the basal area of residual aspen; however, sucker height was inversely related to the basal area of the residual spruce. Although there were adequate numbers of suckers after partial harvest, their viability and contribution to the long-term productivity of these mixedwood stands is not clear. Key words: silvicultural systems, forest management, residual canopy, white spruce, Populus tremuloides, Picea glauca, traffic


2002 ◽  
Vol 80 (4) ◽  
pp. 370-377 ◽  
Author(s):  
David F Greene ◽  
Christian Messier ◽  
Hugo Asselin ◽  
Marie-Josée Fortin

Mean annual seed production is assumed to be proportional to basal area for canopy trees, but it is not known if subcanopy trees produce fewer seeds than expected (given their size) because of low light availability. Ovulate cone production was examined for balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) in 1998 and for balsam fir in 2000 in western Quebec using subcanopy stems, near or far from forest edges, or (at one site) planted white spruce trees in fully open conditions. A very simple light model for transmission through mature trembling aspen (Populus tremuloides Michx.) crowns and through boles near forest edges was developed to account for the effect of light receipt on cone production. The enhanced light near forest edges (e.g., recent clearcuts) leads to about a doubling of cone production for subcanopy stems. The minimum subcanopy height for cone production far from an edge is about 10 m for balsam fir and 14 m for white spruce, with these minima decreasing near edges. By contrast, the minimum height for white spruce in a plantation (full light) is about 3 m. Accounting for light receipt leads to an increase in the explained variance.Key words: balsam fir, cone production, light model, regressions, subcanopy stems, white spruce.


2010 ◽  
Vol 40 (3) ◽  
pp. 585-594 ◽  
Author(s):  
Jonathan Martin-DeMoor ◽  
Victor J. Lieffers ◽  
S. Ellen Macdonald

In some boreal forests sites, there are considerable amounts of natural regeneration of white spruce ( Picea glauca (Moench) Voss) after logging, even without silvicultural treatments to encourage establishment. We assessed the factors controlling the amount of this regeneration 8–15 years postharvest on previously aspen-dominated ( Populus tremuloides Michx.) boreal mixedwood sites. We surveyed 162 transects across 81 cutovers, exploring the effects of mast years, season of harvest, distribution of seed trees, weather conditions around the time of harvest, and abundance of grass or woody vegetation on white spruce regeneration. Substantial amounts of naturally regenerated white spruce were found; however, sites with no seed trees had virtually no spruce regeneration. Average stocking was 7% (percentage of 9 m2 plots along a transect across a cutover that had at least one seedling), ranging from 0% to 62%. Stocking levels were higher in cutblocks that had been harvested in the summer, prior to seedfall of a mast year, and where there was a seed source within 60 m. Stocking was lower when conditions were cool and wet the year before and 2 years after harvest and when the site contained extensive cover of grass or woody vegetation.


2005 ◽  
Vol 35 (3) ◽  
pp. 610-622 ◽  
Author(s):  
EH (Ted) Hogg ◽  
James P Brandt ◽  
B Kochtubajda

Trembling aspen (Populus tremuloides Michx.) is the most important deciduous tree in the North American boreal forest and is also the dominant tree in the aspen parkland zone along the northern edge of the Canadian prairies. Since the 1990s, observations of dieback and reduced growth of aspen forests have led to concerns about the potential impacts of climate change. To address these concerns, a regional-scale study (CIPHA) was established in 2000 that includes annual monitoring of forest health and productivity of 72 aspen stands across the western Canadian interior. Tree-ring analysis was conducted to determine the magnitude and cause of temporal variation in stand growth of aspen at the scale (1800 km × 500 km area) encompassed by this study. The results showed that during 1951–2000 the region's aspen forests underwent several cycles of reduced growth, notably between 1976 and 1981, when mean stand basal area increment decreased by about 50%. Most of the growth variation was explained by interannual variation in a climate moisture index in combination with insect defoliation. The results of the analysis indicate that a major collapse in aspen productivity likely occurred during the severe drought that affected much of the region during 2001–2003.


2007 ◽  
Vol 22 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Ryan J. Klos ◽  
G. Geoff Wang ◽  
Qing-Lai Dang ◽  
Ed W. East

Abstract Kozak's variable exponent taper equation was fitted for balsam poplar (Populus balsamifera L.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), and jack pine (Pinus banksiana Lamb.) in Manitoba. Stem taper variability between two ecozones (i.e., Boreal Shield and Boreal Plains) were tested using the F-test. Regional differences were observed for trembling aspen, white spruce, and jack pine, and for those species, separate ecozone-specific taper equations were developed. However, the gross total volume estimates using the ecozone-specific equations were different from those of the provincial equations by only 2 percent. Although the regional difference in stem form was marginal within a province, a difference of approximately 7 percent of gross total volume estimation was found when our provincial taper equations were compared with those developed in Alberta and Saskatchewan. These results suggest that stem form variation increases with spatial scale and that a single taper equation for each species may be sufficient for each province.


Sign in / Sign up

Export Citation Format

Share Document