scholarly journals Taper Equations for Five Major Commercial Tree Species in Manitoba, Canada

2007 ◽  
Vol 22 (3) ◽  
pp. 163-170 ◽  
Author(s):  
Ryan J. Klos ◽  
G. Geoff Wang ◽  
Qing-Lai Dang ◽  
Ed W. East

Abstract Kozak's variable exponent taper equation was fitted for balsam poplar (Populus balsamifera L.), trembling aspen (Populus tremuloides Michx.), white spruce (Picea glauca [Moench] Voss), black spruce (Picea mariana [Mill.] B.S.P.), and jack pine (Pinus banksiana Lamb.) in Manitoba. Stem taper variability between two ecozones (i.e., Boreal Shield and Boreal Plains) were tested using the F-test. Regional differences were observed for trembling aspen, white spruce, and jack pine, and for those species, separate ecozone-specific taper equations were developed. However, the gross total volume estimates using the ecozone-specific equations were different from those of the provincial equations by only 2 percent. Although the regional difference in stem form was marginal within a province, a difference of approximately 7 percent of gross total volume estimation was found when our provincial taper equations were compared with those developed in Alberta and Saskatchewan. These results suggest that stem form variation increases with spatial scale and that a single taper equation for each species may be sufficient for each province.

2019 ◽  
pp. 297-307
Author(s):  
Yuqing Yang ◽  
Shongming Huang ◽  
Robert Vassov ◽  
Brad Pinno ◽  
Sophan Chhin

Climate-sensitive height–age models were developed for top height trees of trembling aspen (Populus tremuloides Michx.), jack pine (Pinus banksiana Lamb.), and white spruce (Picea glauca (Moench) Voss) in natural and reclaimed oil sands stands. We used stem analysis data collected from the Athabasca oil sands region in northern Alberta, Canada, and climate data generated by the ClimateWNA model. Height–age trajectories differed between top height trees in natural and reclaimed stands for jack pine and white spruce, but not for trembling aspen. At a given age, white spruce top height trees were taller and jack pine top height trees were shorter in reclaimed stands than those in natural stands, suggesting that it is easier to achieve similar forest productivity for oil sands sites reclaimed with white spruce stands than for sites reclaimed with jack pine stands. The principal climate variables were growing season (May to September) precipitation averaged over the previous 10 years for trembling aspen and jack pine and summer (June to August) precipitation averaged over the previous 10 years for white spruce. These variables had positive effects on the height–age trajectories.


2006 ◽  
Vol 36 (9) ◽  
pp. 2331-2340 ◽  
Author(s):  
Suzanne Brais ◽  
David Paré ◽  
Cédric Lierman

To assess nutrient dynamics in decomposing logs of trembling aspen (Populus tremuloides Michx.), white birch (Betula papyrifera Marsh.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.), we monitored mass losses and changes in N and P contents in dead boles from a chronosequence of sites following stand-replacing disturbances. To assess the importance of wood decomposition to nutrient cycling, we compared net estimates of nutrient release from logs with net nutrient immobilization in live-tree biomass of stands as a function of time since disturbance. Mineralization rates were 0.060, 0.053, 0.038, and 0.020·year–1 for trembling aspen, white birch, white spruce, and jack pine logs, respectively. Trembling aspen boles released large quantities of N and P during the first year of decomposition (51 kg·ha–1 of N and 7 kg·ha–1 of P, assuming a bole volume of 150 m3·ha–1). White birch boles acted initially as a nutrient sink and delayed the release of immobilized nutrients until a period when the stand's net nutrient immobilization rates were highest. Jack pine boles appeared to be intermediate in terms of their contribution as a sink or a source of nutrients but, in mature stands, provided up to 40% of N and 26% of P immobilized annually in tree biomass. As pure stands of white spruce are rare in boreal Quebec, information on nutrient accumulation in white spruce stands was not available.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 682
Author(s):  
Feng Xu ◽  
Maryamsadat Vaziriyeganeh ◽  
Janusz J. Zwiazek

Responses of trembling aspen (Populus tremuloides), jack pine (Pinus banksiana), and white spruce (Picea glauca) seedlings to root zone pH ranging from 5 to 9 were studied in sand culture in the presence of two mineral nutrition levels. After eight weeks of treatments, effects of pH on plant dry weights varied between the plant species and were relatively minor in white spruce. Higher nutrient supply significantly increased dry weights only in trembling aspen subjected to pH 5 treatment. There was little effect of pH and nutrition level on net photosynthesis and transpiration rates in white spruce and jack pine, but net photosynthesis markedly declined in aspen at high pH. Chlorophyll concentrations in young foliage decreased the most in trembling aspen and jack pine. The effects of high pH treatments on the concentrations of Mg, P, Ca, Mn, Zn, and Fe in young foliage varied between the plant species with no significant decreases of Fe and Zn recorded in trembling aspen and white spruce, respectively. This was in contrast to earlier reports from the studies carried out in hydroponic culture. The sand culture system that we developed could be a more suitable alternative to hydroponics to study plant responses to pH in the root zone. Plant responses to high pH appear to involve complex events with a likely contribution of nutritional effects and altered water transport processes.


2003 ◽  
Vol 33 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Ryan D Hangs ◽  
J Diane Knight ◽  
Ken CJ Van Rees

Little is known about the N uptake abilities of competitor species and planted seedlings in the boreal forest. The objective of this study was to determine the Michaelis–Menten kinetic parameters of NH4+ and NO3– for white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb.) seedlings, and three competitive common boreal forest early successional species: aspen (Populus tremuloides Michx.), fireweed (Epilobium angustifolium L.), and cala magrostis (Calamagrostis canadensis (Michx.) Beauv.). Uptake kinetics were measured in hydroponic cultures and expressed as maximum uptake (Imax) and ion affinity (Km). The ranking of Imax values (pmol·cm-2·s–1) for NH4+ uptake was calamagrostis (84.6), fireweed (58.1), white spruce (20.7), aspen (12.5), and jack pine (10.9), and for NO3– uptake was calamagrostis (17.7), fireweed (12.5), aspen (5.8), white spruce (4.5), and jack pine (2.1). The ranking of Km values (µM) for NH4+ uptake was calamagrostis (125.9), fireweed (163.8), aspen (205.7), white spruce (217.1), and jack pine (270.5), and for NO3– uptake was calamagrostis (229.9), fireweed (274.6), aspen (336.5), white spruce (344.5), and jack pine (350.5). Calamagrostis exhibited the greatest uptake rates and affinity for NH4+ and NO3–, suggesting that silviculture practices that specifically reduce establishment of this grass should benefit the growth of planted seedlings.


2006 ◽  
Vol 36 (8) ◽  
pp. 1943-1950 ◽  
Author(s):  
Kevin J Kemball ◽  
G. Geoff Wang ◽  
A Richard Westwood

We examined jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP), and white spruce (Picea glauca (Moench) Voss) seed germination and seedling recruitment in aspen (Populus tremuloides Michx.) and conifer mixedwood stands following the 1999 Black River fire in southeastern Manitoba, Canada. Three postfire seedbed types were tested: scorched (surface litter only partially consumed), lightly burned (surface litter consumed with little or no duff consumption), and severely burned (complete consumption of litter and duff exposing mineral soil). Seeds were sown in 1999, 2000, and 2001, and each cohort was monitored for 3 years. In 1999, severely burned seedbeds had poor germination, while scorched seedbeds had the highest germination. The reverse was true in 2001. After the first growing season, continued survival of seedlings was greater on severely burned seedbeds for all three cohorts. However, better survival on severely burned seedbeds was not sufficient to overcome poor germination in 1999 and 2000. When using artificial seeding to promote conifer regeneration, we recommend a delay of one full year after a severe spring fire for jack pine and two full years for black spruce and white spruce on boreal aspen and conifer mixedwood sites.


1953 ◽  
Vol 29 (2) ◽  
pp. 139-143 ◽  
Author(s):  
C. G. Riley

Hail occasionally causes severe damage in forest stands. Near Candle Lake, Saskatchewan, a severe bail storm damaged 70- to 80-year stands including mixed white spruce (Picea glauca (Moench) Voss), aspen (Populus tremuloides Michx.), and jack pine (Pinus banksiana Lamb.); and pure jack pine. Characteristic symptoms seven years after the initial occurrence included: dead trees, particularly jack pine; dead tops; crowns partly dead and conspicuously thin on the side that faced the storm; open and healed wounds all on the same side of the trees, especially on the thin-barked upper parts, all traceable to the annual ring of the same year.


2017 ◽  
Vol 47 (8) ◽  
pp. 1116-1122 ◽  
Author(s):  
Rongzhou Man ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Conifer winter damage results primarily from loss of cold hardiness during unseasonably warm days in late winter and early spring, and such damage may increase in frequency and severity under a warming climate. In this study, the dehardening dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) B.S.P.) were examined in relation to thermal accumulation during artificial dehardening in winter (December) and spring (March) using relative electrolyte leakage and visual assessment of pine needles and spruce shoots. Results indicated that all four species dehardened at a similar rate and to a similar extent, despite considerably different thermal accumulation requirements. Spring dehardening was comparatively faster, with black spruce slightly hardier than the other conifers at the late stage of spring dehardening. The difference, however, was relatively small and did not afford black spruce significant protection during seedling freezing tests prior to budbreak in late March and early May. The dehardening curves and models developed in this study may serve as a tool to predict cold hardiness by temperature and to understand the potential risks of conifer cold injury during warming–freezing events prior to budbreak.


2014 ◽  
Vol 44 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Derek F. Sattler ◽  
Philip G. Comeau ◽  
Alexis Achim

Radial patterns of modulus of elasticity (MOE) were examined for white spruce (Picea glauca (Moench) Voss) and trembling aspen (Populus tremuoides Michx.) from 19 mature, uneven-aged stands in the boreal mixedwood region of northern Alberta, Canada. The main objectives were to (1) evaluate the relationship between pith-to-bark changes in MOE and cambial age or distance from pith; (2) develop species-specific models to predict pith-to-bark changes in MOE; and (3) to test the influences of radial growth, relative vertical height, and tree slenderness (tree height/DBH) on MOE. For both species, cambial age was selected as the best explanatory variable with which to build pith-to-bark models of MOE. For white spruce and trembling aspen, the final nonlinear mixed-effect models indicated that an augmented rate of increase in MOE occurred with increasing vertical position within the tree. For white spruce trees, radial growth and slenderness were found to positively influence maximum estimated MOE. For trembling aspen, there was no apparent effect of vertical position or radial growth on maximum MOE. The results shed light on potential drivers of radial patterns of MOE and will be useful in guiding silvicultural prescriptions.


2019 ◽  
Vol 49 (12) ◽  
pp. 1516-1524
Author(s):  
Denis Belley ◽  
Isabelle Duchesne ◽  
Steve Vallerand ◽  
Julie Barrette ◽  
Michel Beaudoin

The increased pressure on timber supply due to a reduced forest land base urges the development of new approaches to fully capture the value of forest products. This paper investigates the effects of knowing the position of knots on lumber volume, value, and grade recoveries in curve sawing of 31 white spruce (Picea glauca (Moench) Voss) and 22 jack pine (Pinus banksiana Lamb.) trees. Internal knot position was evidenced by X-ray computed tomography (CT) imaging, followed by the application of a knot-detection algorithm allowing log reconstruction for use as input in the Optitek sawing simulation software. Comparisons of the three levels of sawing optimization (sweep up, shape optimized, and knot optimized) revealed that considering internal knots before log sawing (e.g., knot optimized) generated 23% more lumber value for jack pine and 15% more for white spruce compared with the traditional sweep-up sawing strategy. In terms of lumber quality, the knot-optimized strategy produced 38% more pieces of grade No. 2 and better in jack pine and 15% more such pieces in white spruce compared with the sweep-up strategy. These results indicate a great potential to increase manufacturing efficiency and profitability by implementing the CT scanning technology, which should aid in developing a strong bioeconomy based on an optimized use of wood.


Sign in / Sign up

Export Citation Format

Share Document