scholarly journals Plant community composition and tree seedling establishment in response to seeding and weeding treatments on different reclamation cover soils

2019 ◽  
Vol 49 (7) ◽  
pp. 836-843 ◽  
Author(s):  
Leah A. deBortoli ◽  
Bradley D. Pinno ◽  
M. Derek MacKenzie ◽  
Edith H.Y. Li

The majority of plant diversity in North American boreal forests is comprised of understory plant communities undergoing continuous interspecific competition. Anthropogenic activities, particularly surface mining, have introduced higher severity disturbances that not only remove vegetation, but also modify soil. During reclamation, soils used to cap overburden materials have inhibited native plant growth and increased weed invasion. This study aimed to examine the effectiveness of seeding and weeding treatments for promoting the establishment of native understory plant communities, as well as a common deciduous tree species, on three different reclamation cover soils (forest floor – mineral mix, peat–mineral mix, and transitional). The broadcasting of a native forb seed mix was not successful on any of the cover soils, whereas weeding affected each cover soil differently. With weeding, the forest floor – mineral mix and transitional cover soils experienced a decrease in the relative abundance of introduced forbs and an increase in the relative abundance of graminoids. The increase in graminoid cover on the forest floor – mineral mix was mostly attributed to the expansion of Calamagrostis canadensis (Michx.) P. Beauv. Overall, weeding effectively eliminated introduced plant species, allowing competitive native grasses to establish. However, weeding may have unintentionally hindered the development of a native understory plant community via the over-establishment of grass on reclamation sites.

2006 ◽  
Vol 36 (9) ◽  
pp. 2065-2079 ◽  
Author(s):  
Paula Bartemucci ◽  
Christian Messier ◽  
Charles D Canham

We have characterized overstory light transmission, understory light levels, and plant communities in mixed wood boreal forests of northwestern Quebec with the objective of understanding how overstory light transmission interacts with composition and time since disturbance to influence the diversity and composition of understory vegetation, and, in turn, the further attenuation of light to the forest floor by the understory. Overstory light transmission differed among three forest types (aspen, mixed deciduous–conifer, and old cedar-dominated), with old forests having higher proportions of high light levels than aspen and mixed forests, which were characterized by intermediate light levels. The composition of the understory plant communities in old forests showed the weakest correlation to overstory light transmission, although those forests had the largest range of light transmission. The strongest correlation between characteristics of overstory light transmission and understory communities was found in aspen forests. Species diversity indices were consistently higher in aspen forests but showed weak relationships with overstory light transmission. Light attenuation by the understory vegetation and total height of the understory vegetation were strongly and positively related to overstory light transmission but not forest type. Therefore, light transmission through the overstory influenced the structure and function of understory plants more than their diversity and composition. This is likely due to the strong effect of the upper understory layers, which tend to homogenize light levels at the forest floor regardless of forest type. The understory plant community acts as a filter, thereby reducing light levels at the forest floor to uniformly low levels.


2020 ◽  
Vol 50 (12) ◽  
pp. 1340-1351
Author(s):  
Laureen F.I. Echiverri ◽  
S. Ellen Macdonald ◽  
Scott E. Nielsen

In peatlands, microtopography strongly affects understory plant communities. Disturbance can result in a loss of microtopographic variation, primarily through the loss of hummocks. To address this, mounding treatments can be used to restore microtopography. We examined the effects of mounding on the understory vegetation on seismic lines in wooded fens. Seismic lines are deforested linear corridors (∼3 to 8 m wide) created for oil and gas exploration. Our objectives were to compare the recovery of understory communities on unmounded and mounded seismic lines and determine how recovery varies with microtopographic position. Recovery was evident in the unmounded seismic lines, with higher shrub and total understory cover at the “tops” of the small, natural hummocks than at lower microtopographic positions — much like the trends in adjacent treed fens. In contrast, mounding treatments that artificially created hummocks on seismic lines significantly changed understory communities. Mounded seismic lines had higher forb cover, much lower bryophyte cover, less variation along the microtopographic gradient, and community composition less similar to that of the reference sites than unmounded seismic lines due to higher abundance of marsh-associated species. Our results suggest that mounding narrow seismic lines can be detrimental to the recovery of the understory communities in treed peatlands.


2019 ◽  
Vol 30 (6) ◽  
pp. 1099-1109 ◽  
Author(s):  
Jens T. Stevens ◽  
Jesse E. D. Miller ◽  
Paula J. Fornwalt

2009 ◽  
Vol 2 (4) ◽  
pp. 292-300 ◽  
Author(s):  
James L. Hanula ◽  
Scott Horn ◽  
John W. Taylor

AbstractChinese privet is a major invasive shrub within riparian zones throughout the southeastern United States. We removed privet shrubs from four riparian forests in October 2005 with a Gyrotrac® mulching machine or by hand-felling with chainsaws and machetes to determine how well these treatments controlled privet and how they affected plant community recovery. One year after shrub removal a foliar application of 2% glyphosate was applied to privet remaining in the herbaceous layer. Three “desired-future-condition” plots were also measured to assess how well treatments shifted plant communities toward a desirable outcome. Both methods completely removed privet from the shrub layer without reducing nonprivet shrub cover and diversity below levels on the untreated control plots. Nonprivet plant cover on the mulched plots was > 60% by 2007, similar to the desired-future-condition plots and higher than the hand-felling plots. Both treatments resulted in higher nonprivet plant cover than the untreated controls. Ordination showed that after 2 yr privet removal plots were tightly grouped, suggesting that the two removal techniques resulted in the same plant communities, which were distinctly different from both the untreated controls and the desired-future-condition. Both treatments created open streamside forests usable for recreation and other human activities. However, much longer periods of time or active management of the understory plant communities, or both, will be required to change the forests to typical mature forest plant communities.


Sign in / Sign up

Export Citation Format

Share Document