scholarly journals A common precursor for the three subunits of L-glutamate oxidase encoded by gox gene from Streptomyces platensis NTU3304

2001 ◽  
Vol 47 (3) ◽  
pp. 269-275 ◽  
Author(s):  
Chien-Yuan Chen ◽  
Wen-Tung Wu ◽  
Chang-Jen Huang ◽  
Mei-Huei Lin ◽  
Chen-Kai Chang ◽  
...  
2001 ◽  
Vol 47 (3) ◽  
pp. 269-275 ◽  
Author(s):  
Chien-Yuan Chen ◽  
Wen-Tung Wu ◽  
Chang-Jen Huang ◽  
Mei-Huei Lin ◽  
Chen-Kai Chang ◽  
...  

A segment of DNA containing the L-glutamate oxidase (gox) gene from Streptomyces platensis NTU3304 was cloned. The entire nucleotide sequence of the protein-coding portion consisting of 2130 bp (710 codons, including AUG and UGA) of the cloned DNA fragment was determined. The gox gene contained only one open reading frame (ORF) which coded for a 78-kDa polypeptide, the precursor of active extracellular Gox. Mature Gox is composed of three subunits, designated as α, β, and γ, with molecular masses of 39, 19, and 16 kDa, respectively. Analyses of the N-terminal amino acid sequences of the subunits revealed that the order of subunits in the precursor polypeptide encoded by the ORF, from N-terminus to C-terminus, is α–γ–β. The presence of the flavin adenine dinucleotide (FAD)-binding motif place Gox as a member of the flavoenzyme family. Furthermore, a negative effect of glucose on the biosynthesis of Gox was observed when it was used as carbon source.Key words: L-glutamate oxidase, gox gene, signal peptide, DNA sequence, flavoenzyme, pIJ702 vector.


2004 ◽  
Vol 171 (4S) ◽  
pp. 125-125
Author(s):  
Lizhong Wang ◽  
Kazunari Sato ◽  
Norihiko Tsuchiya ◽  
Chikara Ohyama ◽  
Shigeru Satoh ◽  
...  

2018 ◽  
Author(s):  
Andrea Pérez-Villa ◽  
Thomas Georgelin ◽  
Jean-François Lambert ◽  
Marie-Christine Maurel ◽  
François Guyot ◽  
...  

Understanding the mechanism of spontaneous formation of ribonucleotides under realistic prebiotic conditions is a key open issue of origins-of-life research. In cells, <i>de novo</i> and salvage nucleotide enzymatic synthesis combines 5-phospho-α -D-ribose-1-diphosphate ( α-PRPP) and nucleobases. Interestingly, these reactants are also known as prebiotically plausible compounds. Combining ab initio simulations with mass spectrometry experiments, we compellingly demonstrate that nucleobases and α -PRPP spontaneously combine, through the same facile mechanism, forming both purine and pyrimidine ribonucleotides, under mild hydrothermal conditions. Surprisingly, this mechanism is very similar to the biological one, and yields ribonucleotides with the same anomeric carbon chirality as in biological systems. These results suggest that natural selection might have optimized – through enzymes – a pre-existing ribonucleotide formation mechanism, carrying it forward to modern life forms.


2017 ◽  
Author(s):  
Andrea Pérez-Villa ◽  
Thomas Georgelin ◽  
Jean-François Lambert ◽  
Marie-Christine Maurel ◽  
François Guyot ◽  
...  

Understanding the mechanism of spontaneous formation of ribonucleotides under realistic prebiotic conditions is a key open issue of origins-of-life research. In cells, <i>de novo</i> and salvage nucleotide enzymatic synthesis combines 5-phospho-α -D-ribose-1-diphosphate ( α-PRPP) and nucleobases. Interestingly, these reactants are also known as prebiotically plausible compounds. Combining ab initio simulations with mass spectrometry experiments, we compellingly demonstrate that nucleobases and α -PRPP spontaneously combine, through the same facile mechanism, forming both purine and pyrimidine ribonucleotides, under mild hydrothermal conditions. Surprisingly, this mechanism is very similar to the biological one, and yields ribonucleotides with the same anomeric carbon chirality as in biological systems. These results suggest that natural selection might have optimized – through enzymes – a pre-existing ribonucleotide formation mechanism, carrying it forward to modern life forms.


Sign in / Sign up

Export Citation Format

Share Document