scholarly journals The chiral anomaly, Dirac and Weyl semimetals, and force-free magnetic fields

2017 ◽  
Vol 95 (8) ◽  
pp. 711-714
Author(s):  
Gerald E. Marsh

The chiral anomaly is a purely quantum mechanical phenomenon that has a long history dating back to the late 1960s. Surprisingly, it has recently made a macroscopic appearance in condensed matter physics. A brief introduction to the relevant features of this anomaly is given and it is shown that its appearance in condensed matter systems must involve force-free magnetic fields, which may help explain the long current relaxation times in Dirac and Weyl semimetals.

2020 ◽  
Vol 34 (36) ◽  
pp. 2050415
Author(s):  
Yasushi Kawashima ◽  
Rajendra Dulal ◽  
Serafim Teknowijoyo ◽  
Sara Chahid ◽  
Armen Gulian

Perfect screening of sub-milligauss magnetic fields (ideal diamagnetism) by a system comprised of a graphene and thin permalloy foil parallel to the graphene layer immersed in [Formula: see text]-heptane is observed at room temperature. The presence of all three components is necessary for the effect to occur. Ideal diamagnetic response appears at the moment of [Formula: see text]-heptane injection and disappears when the liquid evaporates. Until then, no change of diamagnetic moment occurs at further variation of the field. The observed ideal diamagnetic feature is either a footprint of a novel type of superconductivity at room temperature or a yet unknown quantum phenomenon in condensed matter physics.


2021 ◽  
Vol 6 (2) ◽  
pp. 18
Author(s):  
Christopher Sims

The observation of wormholes has proven to be difficult in the field of astrophysics. However, with the discovery of novel topological quantum materials, it is possible to observe astrophysical and particle physics effects in condensed matter physics. It is proposed in this work that wormholes can exist in a type-III Weyl phase. In addition, these wormholes are topologically protected, making them feasible to create and measure in condensed matter systems. Finally, Co3In2X2 (X = S, Se) are identified as ideal type-III Weyl semimetals and experiments are put forward to confirm the existence of a type-III Weyl phase.


Author(s):  
Alessandro Giuliani ◽  
Vieri Mastropietro ◽  
Marcello Porta

AbstractWeyl semimetals are 3D condensed matter systems characterized by a degenerate Fermi surface, consisting of a pair of ‘Weyl nodes’. Correspondingly, in the infrared limit, these systems behave effectively as Weyl fermions in $$3+1$$ 3 + 1 dimensions. We consider a class of interacting 3D lattice models for Weyl semimetals and prove that the quadratic response of the quasi-particle flow between the Weyl nodes is universal, that is, independent of the interaction strength and form. Universality is the counterpart of the Adler–Bardeen non-renormalization property of the chiral anomaly for the infrared emergent description, which is proved here in the presence of a lattice and at a non-perturbative level. Our proof relies on constructive bounds for the Euclidean ground state correlations combined with lattice Ward Identities, and it is valid arbitrarily close to the critical point where the Weyl points merge and the relativistic description breaks down.


Author(s):  
R. H. Ritchie ◽  
A. Howie

An important part of condensed matter physics in recent years has involved detailed study of inelastic interactions between swift electrons and condensed matter surfaces. Here we will review some aspects of such interactions.Surface excitations have long been recognized as dominant in determining the exchange-correlation energy of charged particles outside the surface. Properties of surface and bulk polaritons, plasmons and optical phonons in plane-bounded and spherical systems will be discussed from the viewpoint of semiclassical and quantal dielectric theory. Plasmons at interfaces between dissimilar dielectrics and in superlattice configurations will also be considered.


Author(s):  
Jan Zaanen ◽  
Yan Liu ◽  
Ya-Wen Sun ◽  
Koenraad Schalm

Sign in / Sign up

Export Citation Format

Share Document